Chenglong Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1987946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced microwave absorption of flaky FeSiAl/ZnO composites fabricated via precipitation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115502.	3.5	15
2	In situ de-wetting of liquid–solid interface to fabricate spherical Ag@Ni immiscible alloys. AIP Advances, 2022, 12, 025208.	1.3	0
3	Effect of substitution on the structural and magnetic properties of Sm3+-doped / SmFeO3 in nickel-copper-zinc mixed ferrite nanoparticles. Ceramics International, 2020, 46, 2523-2529.	4.8	12
4	Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl /ferrite composites. Journal of Alloys and Compounds, 2020, 822, 153674.	5.5	55
5	A Novel Fabrication of Spherical Fe50ni50 Alloy Powders via in-Situ De-Wetting of Liquid Solid Interface. Crystals, 2019, 9, 325.	2.2	1
6	Influence of precursor and salt assisted calcination on magnetic properties of Sr-ferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 12597-12602.	2.2	2
7	Synthesis of graphene on Ni foam with enhanced capacitive performance by embedding PS spacers. Materials Technology, 2019, 34, 499-505.	3.0	5
8	A novel synthetic strategy of Fe@Cu core-shell microsphere particles by integration of solid-state immiscible metal system and low wettability. Journal of Alloys and Compounds, 2018, 747, 50-54.	5.5	12
9	Interface polarization matters: Enhancing supercapacitor performance of spinel NiCo2O4 nanowires by reduced graphene oxide coating. Electrochimica Acta, 2018, 260, 814-822.	5.2	94
10	Synthesis of rGO/PS compound with sandwich structure on Ni foam as binder-free electrode for supercapacitor. Functional Materials Letters, 2017, 10, 1750032.	1.2	7
11	UV-assisted reduction of graphene oxide on Ni foam as high performance electrode for supercapacitors. Carbon, 2016, 107, 917-924.	10.3	25
12	Facile synthesis of nitrogen-doped graphene on Ni foam for high-performance supercapacitors. Journal of Materials Science, 2016, 51, 6348-6356.	3.7	31
13	In-situ de-wetting assisted fabrication of spherical Cu-Sn alloy powder via the reduction of mixture metallic oxides. Powder Technology, 2016, 301, 356-359.	4.2	15
14	Synthesis of aligned La3+-substituted Sr-ferrites via molten salt assisted sintering and their magnetic properties. Ceramics International, 2016, 42, 15511-15516.	4.8	29
15	Fabrication of spherical Fe-based magnetic powders via the in situ de-wetting of the liquid–solid interface. RSC Advances, 2016, 6, 3428-3432.	3.6	6
16	Facile synthesis of porous graphene as binder-free electrode for supercapacitor application. Applied Surface Science, 2016, 366, 46-52.	6.1	41
17	The formation of ultrafine spherical metal powders using a low wettability strategy of solid–liquid interface. Materials and Design, 2016, 97, 324-330	7.0	19
	Mössbauer and XRD Studies of		

18 N_{0.6}Cu_{0.2}Zn_{0.2}Ce<i>_x</i>Fersites by Solâ€"Gel Auto-Combustion. Journal of Nanoscience and Nanotechnology, 2015, 15, 2997-3003.

CHENGLONG LEI

#	Article	IF	CITATIONS
19	Mono-disperse spherical Cu–Zn powder fabricated via the low wettability of liquid/solid interface. Applied Surface Science, 2015, 357, 167-171.	6.1	15
20	NH ₃ assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors. Nanoscale, 2015, 7, 2060-2068.	5.6	47
21	Mössbauer and Structural Properties of La-Substituted Ni _{0.4} Cu _{0.2} Zn _{0.4} Fe _{2<!--<br-->Nanocrystalline Ferrite. Science of Advanced Materials, 2015, 7, 1809-1815.}	SUð>O	&l t;\$ UB>4
22	Spin-glass behavior and magnetic splitting in molecular magnetic materials {[N(n-C4H9)4][MIIFeIII(C2O4)3]}nÂ(M = Co, Mn). Hyperfine Interactions, 2013, 219, 95-100.	0.5	2
23	Magnetic Studies in Rare Earth-iron Oxalate-bridged Complexes MFe(C2O4)3·9H2O (M=Ce, Pr). Physics Procedia, 2012, 25, 369-374.	1.2	7