
## Andrew M Sayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1987866/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 2013, 6, 2989-3034.                                                                                                 | 3.1  | 1,612     |
| 2  | Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with<br>Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2016, 50,<br>3762-3772.   | 10.0 | 871       |
| 3  | Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical<br>Research D: Atmospheres, 2013, 118, 9296-9315.                                                                      | 3.3  | 803       |
| 4  | Satellite-Based Spatiotemporal Trends in PM <sub>2.5</sub> Concentrations: China, 2004–2013.<br>Environmental Health Perspectives, 2016, 124, 184-192.                                                               | 6.0  | 565       |
| 5  | MODIS Collection 6 aerosol products: Comparison between Aqua's eâ€Deep Blue, Dark Target, and<br>"merged―data sets, and usage recommendations. Journal of Geophysical Research D: Atmospheres,<br>2014, 119, 13,965. | 3.3  | 478       |
| 6  | Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue―aerosol data. Journal of<br>Geophysical Research D: Atmospheres, 2013, 118, 7864-7872.                                                        | 3.3  | 445       |
| 7  | Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018).<br>Environmental Science & Technology, 2020, 54, 7879-7890.                                                             | 10.0 | 431       |
| 8  | Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data. Atmospheric Chemistry and Physics, 2009, 9, 8697-8717.                                                      | 4.9  | 418       |
| 9  | Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 2012, 12, 8037-8053.                                        | 4.9  | 319       |
| 10 | Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.                                                      | 4.9  | 240       |
| 11 | Monthly Clobal Estimates of Fine Particulate Matter and Their Uncertainty. Environmental Science<br>& Technology, 2021, 55, 15287-15300.                                                                             | 10.0 | 211       |
| 12 | Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research, 2007, 85, 372-394.                                                          | 4.1  | 196       |
| 13 | An overview of regional experiments on biomass burning aerosols and related pollutants in<br>Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment, 2013,<br>78, 1-19.        | 4.1  | 166       |
| 14 | A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals. Atmospheric<br>Measurement Techniques, 2010, 3, 813-838.                                                                         | 3.1  | 154       |
| 15 | Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol<br>Data Over Land. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4658-4688.                        | 3.3  | 140       |
| 16 | The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmospheric Measurement Techniques, 2010, 3, 909-932.            | 3.1  | 136       |
| 17 | VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Longâ€Term Aerosol Data Records.<br>Journal of Geophysical Research D: Atmospheres, 2019, 124, 4026-4053.                                              | 3.3  | 128       |
| 18 | Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS.<br>Atmospheric Measurement Techniques, 2012, 5, 1761-1778.                                                       | 3.1  | 115       |

ANDREW M SAYER

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets.<br>Journal of Geophysical Research, 2012, 117, .                                                                           | 3.3  | 108       |
| 20 | Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,157.               | 3.3  | 99        |
| 21 | Merging regional and global aerosol optical depth records from major available satellite products.<br>Atmospheric Chemistry and Physics, 2020, 20, 2031-2056.                                                                  | 4.9  | 98        |
| 22 | Anion binding by catechols—an NMR, optical and electrochemical study. Organic and Biomolecular<br>Chemistry, 2006, 4, 1760-1767.                                                                                               | 2.8  | 91        |
| 23 | Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth System Science Data, 2020, 12, 3573-3620.                                   | 9.9  | 90        |
| 24 | A pure marine aerosol model, for use in remote sensing applications. Journal of Geophysical Research, 2012, 117, .                                                                                                             | 3.3  | 77        |
| 25 | AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmospheric Chemistry and Physics, 2014, 14, 11493-11523. | 4.9  | 75        |
| 26 | Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to Sâ€NPP VIIRS as Part of the "Deep Blue―<br>Aerosol Project. Journal of Geophysical Research D: Atmospheres, 2018, 123, 380-400.                                | 3.3  | 72        |
| 27 | Retrieving nearâ€global aerosol loading over land and ocean from AVHRR. Journal of Geophysical<br>Research D: Atmospheres, 2017, 122, 9968-9989.                                                                               | 3.3  | 71        |
| 28 | The GRAPE aerosol retrieval algorithm. Atmospheric Measurement Techniques, 2009, 2, 679-701.                                                                                                                                   | 3.1  | 69        |
| 29 | Interactions between biomass-burning aerosols and clouds over Southeast Asia: Current status, challenges, and perspectives. Environmental Pollution, 2014, 195, 292-307.                                                       | 7.5  | 68        |
| 30 | Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR.<br>Atmospheric Measurement Techniques, 2012, 5, 1889-1910.                                                                  | 3.1  | 65        |
| 31 | From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmospheric Environment, 2013, 78, 20-34.                                                | 4.1  | 64        |
| 32 | A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing. Atmospheric Measurement Techniques, 2020, 13, 373-404.                                                     | 3.1  | 59        |
| 33 | Effects of COVID-19 lockdowns on fine particulate matter concentrations. Science Advances, 2021, 7, .                                                                                                                          | 10.3 | 53        |
| 34 | Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011. Remote Sensing of Environment, 2013, 136, 99-116.                                                   | 11.0 | 52        |
| 35 | Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An<br>Overview of 7-SEAS/BASELINE. Aerosol and Air Quality Research, 2016, 16, 2581-2602.                                          | 2.1  | 52        |
| 36 | Extending "Deep Blue―aerosol retrieval coverage to cases of absorbing aerosols above clouds:<br>Sensitivity analysis and first case studies. Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>4830-4854.          | 3.3  | 49        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Observations of the Interaction and Transport of Fine Mode Aerosols With Cloud and/or Fog in<br>Northeast Asia From Aerosol Robotic Network and Satellite Remote Sensing. Journal of Geophysical<br>Research D: Atmospheres, 2018, 123, 5560-5587. | 3.3  | 49        |
| 38 | Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers. , 2009, , 193-225.                                                                                                                                             |      | 49        |
| 39 | Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast AtlanticÂ(SEA) and its sensitivity to absorbing properties: a regional climate modeling study. Atmospheric Chemistry and Physics, 2020, 20, 13191-13216.   | 4.9  | 49        |
| 40 | AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical<br>Properties During the 2015 Indonesian Burning Season. Journal of Geophysical Research D:<br>Atmospheres, 2019, 124, 4722-4740.                           | 3.3  | 40        |
| 41 | An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation.<br>Atmospheric Chemistry and Physics, 2020, 20, 12431-12457.                                                                                     | 4.9  | 40        |
| 42 | Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements.<br>Journal of Geophysical Research D: Atmospheres, 2017, 122, 9945-9967.                                                                             | 3.3  | 39        |
| 43 | Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment. Atmospheric<br>Chemistry and Physics, 2011, 11, 3913-3936.                                                                                                   | 4.9  | 38        |
| 44 | Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields. Atmospheric Chemistry and Physics, 2010, 10, 10705-10716.                                                                           | 4.9  | 37        |
| 45 | Intercomparison of desert dust optical depth from satellite measurements. Atmospheric Measurement<br>Techniques, 2012, 5, 1973-2002.                                                                                                               | 3.1  | 37        |
| 46 | Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions. Remote Sensing of Environment, 2012, 116, 177-188.                                  | 11.0 | 35        |
| 47 | Validation of the GRAPE single view aerosol retrieval for ATSR-2 and insights into the long term global AOD trend over the ocean. Atmospheric Chemistry and Physics, 2010, 10, 4849-4866.                                                          | 4.9  | 34        |
| 48 | Validation of SOAR VIIRS Overâ€Water Aerosol Retrievals and Context Within the Global Satellite<br>Aerosol Data Record. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,496.                                                         | 3.3  | 34        |
| 49 | AERONETâ€Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water<br>Aerosol Product. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10384-10401.                                                     | 3.3  | 33        |
| 50 | Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products. International Journal of Digital Earth, 2017, 10, 207-218.                                                                        | 3.9  | 32        |
| 51 | How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth. Atmospheric Chemistry and Physics, 2019, 19, 15023-15048.                                                           | 4.9  | 32        |
| 52 | Seven years of global retrieval of cloud properties using space-borne data of GOME. Atmospheric<br>Measurement Techniques, 2012, 5, 1551-1570.                                                                                                     | 3.1  | 31        |
| 53 | Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime<br>Aerosol Network. Atmospheric Measurement Techniques, 2012, 5, 377-388.                                                                        | 3.1  | 30        |
| 54 | Estimating marine aerosol particle volume and number from Maritime Aerosol Network data.<br>Atmospheric Chemistry and Physics, 2012, 12, 8889-8909.                                                                                                | 4.9  | 29        |

ANDREW M SAYER

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea?.<br>Geophysical Research Letters, 2012, 39, .                                                                                                                           | 4.0 | 29        |
| 56 | Satellite observation of pollutant emissions from gas flaring activities near the Arctic. Atmospheric Environment, 2016, 133, 1-11.                                                                                                                               | 4.1 | 29        |
| 57 | Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes. Atmospheric Measurement Techniques, 2017, 10, 1425-1444.                                                                                   | 3.1 | 29        |
| 58 | Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8372-8388.                                                                                | 3.3 | 27        |
| 59 | Systematic satellite observations of the impact of aerosols from passive volcanic degassing on local cloud properties. Atmospheric Chemistry and Physics, 2014, 14, 10601-10618.                                                                                  | 4.9 | 26        |
| 60 | Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke<br>aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments.<br>Atmospheric Chemistry and Physics, 2019, 19, 4963-4990. | 4.9 | 25        |
| 61 | Automatic detection of ship tracks in ATSR-2 satellite imagery. Atmospheric Chemistry and Physics, 2009, 9, 1899-1905.                                                                                                                                            | 4.9 | 23        |
| 62 | Reconciling satellite-derived atmospheric properties with fine-resolution land imagery: Insights for atmospheric correction. Journal of Geophysical Research, 2011, 116, .                                                                                        | 3.3 | 22        |
| 63 | Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation. Atmospheric Measurement Techniques, 2015, 8, 5277-5288.                                                                                              | 3.1 | 21        |
| 64 | The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1185-1209.                                                                                                                 | 1.3 | 19        |
| 65 | Harnessing remote sensing to address critical science questions on ocean-atmosphere interactions.<br>Elementa, 2018, 6, .                                                                                                                                         | 3.2 | 18        |
| 66 | Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm<br>updates and validation with ORACLES field campaign data. Atmospheric Measurement Techniques, 2019,<br>12, 3595-3627.                                         | 3.1 | 15        |
| 67 | How Long Is Too Long? Variogram Analysis of AERONET Data to Aid Aerosol Validation and Intercomparison Studies. Earth and Space Science, 2020, 7, e2020EA001290.                                                                                                  | 2.6 | 14        |
| 68 | In-Situ and Remotely-Sensed Observations of Biomass Burning Aerosols at Doi Ang Khang, Thailand<br>during 7-SEAS/BASELInE 2015. Aerosol and Air Quality Research, 2016, 16, 2786-2801.                                                                            | 2.1 | 13        |
| 69 | A geometry-dependent surface Lambertian-equivalent reflectivity product for UV–Vis retrievals – Part<br>2: Evaluation over open ocean. Atmospheric Measurement Techniques, 2019, 12, 6749-6769.                                                                   | 3.1 | 13        |
| 70 | Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple<br>Satellite Sensors over Southeast Asia. Aerosol and Air Quality Research, 2016, 16, 2831-2842.                                                               | 2.1 | 13        |
| 71 | Adaptive Data Screening for Multi-Angle Polarimetric Aerosol and Ocean Color Remote Sensing Accelerated by Deep Learning. Frontiers in Remote Sensing, 2021, 2, .                                                                                                 | 3.5 | 13        |
| 72 | Retrieval of aerosol optical depth under thin cirrus from MODIS: Application to an ocean algorithm.<br>Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,111.                                                                                         | 3.3 | 12        |

ANDREW M SAYER

| #  | Article                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Quantifying the response of the ORAC aerosol optical depth retrieval for MSG SEVIRI to aerosol model assumptions. Journal of Geophysical Research, 2011, 116, .                                                                                                                                                              | 3.3 | 11        |
| 74 | Aerosol Layer Height With Enhanced Spectral Coverage Achieved by Synergy Between VIIRS and OMPS-NM Measurements. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 949-953.                                                                                                                                              | 3.1 | 9         |
| 75 | Evaluation of Novel NASA Moderate Resolution Imaging Spectroradiometer and Visible Infrared<br>Imaging Radiometer Suite Aerosol Products and Assessment of Smoke Height Boundary Layer Ratio<br>During Extreme Smoke Events in the Western USA. Journal of Geophysical Research D: Atmospheres,<br>2021, 126, e2020ID034180. | 3.3 | 9         |
| 76 | GEWEX cloud assessment: A review. AIP Conference Proceedings, 2013, , .                                                                                                                                                                                                                                                      | 0.4 | 7         |
| 77 | COMMIT in 7-SEAS/BASELInE: Operation of and Observations from a Novel, Mobile Laboratory for Measuring In-Situ Properties of Aerosols and Gases. Aerosol and Air Quality Research, 2016, 16, 2728-2741.                                                                                                                      | 2.1 | 5         |
| 78 | Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification. Applied Optics, 2022, 61, 6453.                                                                                                                                                                              | 1.8 | 5         |
| 79 | Coupled Aerosol-Cloud Systems over Northern Vietnam during 7-SEAS/BASELInE: A Radar and Modeling Perspective. Aerosol and Air Quality Research, 2016, 16, 2768-2785.                                                                                                                                                         | 2.1 | 4         |
| 80 | Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center. Bulletin of the American Meteorological Society, 2014, 95, ES203-ES207.                                                                                                                                                             | 3.3 | 0         |