List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1987631/publications.pdf Version: 2024-02-01

MIN ZHENC

#	Article	IF	CITATIONS
1	Recovery of ammonium and phosphate from urine as value-added fertilizer using wood waste biochar loaded with magnesium oxides. Journal of Cleaner Production, 2018, 187, 205-214.	9.3	174
2	Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 2018, 212, 262-271.	8.2	130
3	Improving wastewater management using free nitrous acid (FNA). Water Research, 2020, 171, 115382.	11.3	111
4	A 20-Year Journey of Partial Nitritation and Anammox (PN/A): from Sidestream toward Mainstream. Environmental Science & Technology, 2022, 56, 7522-7531.	10.0	106
5	The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine. Water Research, 2015, 80, 71-79.	11.3	102
6	Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Research, 2021, 200, 117239.	11.3	81
7	Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. Water Research, 2019, 162, 331-338.	11.3	68
8	Achieving Stable Partial Nitritation in an Acidic Nitrifying Bioreactor. Environmental Science & Technology, 2020, 54, 456-463.	10.0	59
9	Adaptation of nitrifying community in activated sludge to free ammonia inhibition and inactivation. Science of the Total Environment, 2020, 728, 138713.	8.0	58
10	Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. Environmental Science & Technology, 2021, 55, 7208-7224.	10.0	57
11	Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process. Environmental Science & Technology, 2016, 50, 864-871.	10.0	56
12	Robust Nitritation Sustained by Acid-Tolerant Ammonia-Oxidizing Bacteria. Environmental Science & Technology, 2021, 55, 2048-2056.	10.0	51
13	Critical Factors Facilitating <i>Candidatus</i> Nitrotoga To Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. Environmental Science & Technology, 2020, 54, 15414-15423.	10.0	43
14	An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge. Water Research, 2021, 195, 116977.	11.3	41
15	A green method for the simultaneous recovery of phosphate and potassium from hydrolyzed urine as value-added fertilizer using wood waste. Resources, Conservation and Recycling, 2020, 157, 104793.	10.8	38
16	Free ammonia shock treatment eliminates nitrite-oxidizing bacterial activity for mainstream biofilm nitritation process. Chemical Engineering Journal, 2020, 393, 124682.	12.7	37
17	Efficient nitrogen removal from mainstream wastewater through coupling Partial Nitritation, Anammox and Methane-dependent nitrite/nitrate reduction (PNAM). Water Research, 2021, 206, 117723.	11.3	37
18	Recovery of Phosphorus and Potassium from Source-Separated Urine Using a Fluidized Bed Reactor: Optimization Operation and Mechanism Modeling. Industrial & Engineering Chemistry Research, 2017, 56, 3033-3039.	3.7	35

#	Article	lF	CITATIONS
19	Achieving mainstream nitrogen removal via the nitrite pathway from real municipal wastewater using intermittent ultrasonic treatment. Ultrasonics Sonochemistry, 2019, 51, 406-411.	8.2	35
20	Predictions of the Influent and Operational Conditions for Partial Nitritation with a Model Incorporating pH Dynamics. Environmental Science & Technology, 2018, 52, 6457-6465.	10.0	34
21	Nitrite production from urine for sulfide control in sewers. Water Research, 2017, 122, 447-454.	11.3	33
22	Control sulfide and methane production in sewers based on free ammonia inactivation. Environment International, 2020, 143, 105928.	10.0	33
23	Hydrogen sulfide generation and emission in urban sanitary sewer in China: what factor plays the critical role?. Environmental Science: Water Research and Technology, 2019, 5, 839-848.	2.4	32
24	Free nitrous acid pre-treatment enhances anaerobic digestion of waste activated sludge and rheological properties of digested sludge: A pilot-scale study. Water Research, 2020, 172, 115515.	11.3	32
25	Versatility of nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO): First demonstration with real wastewater. Water Research, 2021, 194, 116912.	11.3	32
26	Effects of ultrasonic treatment on the ammonia-oxidizing bacterial (AOB) growth kinetics. Science of the Total Environment, 2019, 690, 629-635.	8.0	30
27	Use of low frequency and density ultrasound to stimulate partial nitrification and simultaneous nitrification and denitrification. Bioresource Technology, 2013, 146, 537-542.	9.6	28
28	Post-treatment options for anaerobically digested sludge: Current status and future prospect. Water Research, 2021, 205, 117665.	11.3	28
29	Selective enrichment and metagenomic analysis of three novel comammox <i>Nitrospira</i> in a urine-fed membrane bioreactor. ISME Communications, 2021, 1, .	4.2	27
30	Biochar as a Carrier of Struvite Precipitation for Nitrogen and Phosphorus Recovery from Urine. Journal of Environmental Engineering, ASCE, 2018, 144, .	1.4	23
31	Inactivation kinetics of nitrite-oxidizing bacteria by free nitrous acid. Science of the Total Environment, 2021, 752, 141876.	8.0	23
32	Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer â€~Candidatus Nitrosoglobus'. Water Research, 2021, 196, 117026.	11.3	22
33	Transforming anaerobically digested sludge into high-quality biosolids with an integrated physiochemical approach. Resources, Conservation and Recycling, 2022, 184, 106416.	10.8	22
34	Factors Affecting the Crystal Size of Struvite-K Formed in Synthetic Urine Using a Stirred Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 17301-17309.	3.7	21
35	Water Reduction and Nutrient Reconcentration of Hydrolyzed Urine via Direct-Contact Membrane Distillation: Ammonia Loss and Its Control. Journal of Environmental Engineering, ASCE, 2019, 145, .	1.4	21
36	The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: A model-based evaluation. Bioresource Technology, 2020, 295, 122225.	9.6	21

#	Article	IF	CITATIONS
37	Evaluating the excess sludge reduction in activated sludge system with ultrasonic treatment. Water Science and Technology, 2018, 77, 2341-2347.	2.5	20
38	Effect of blending landfill leachate with activated sludge on the domestic wastewater treatment process. Environmental Science: Water Research and Technology, 2019, 5, 268-276.	2.4	18
39	Temperature Variations Shape Niche Occupation of <i>Nitrotoga</i> -like Bacteria in Activated Sludge. ACS ES&T Water, 2021, 1, 167-174.	4.6	18
40	Free nitrous acid-based suppression of sulfide production in sewer sediments: In-situ effect mechanism. Science of the Total Environment, 2020, 715, 136871.	8.0	17
41	Generality and diversity on the kinetics, toxicity and DFT studies of sulfate radical-induced transformation of BPA and its analogues. Water Research, 2022, 219, 118506.	11.3	17
42	Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Journal of Hazardous Materials, 2022, 438, 129535.	12.4	17
43	Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Research, 2021, 194, 116962.	11.3	16
44	New insight into increased toxicity during ozonation of chlorophenol: The significant contribution of oxidizing intermediates. Science of the Total Environment, 2021, 769, 144569.	8.0	16
45	Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management. Water Research, 2021, 203, 117536.	11.3	16
46	Assessing the stability of one-stage PN/A process through experimental and modelling investigations. Science of the Total Environment, 2021, 801, 149740.	8.0	16
47	Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification. Environmental Science & Technology, 2022, 56, 8663-8672.	10.0	15
48	Feasibility of methane bioconversion to methanol by acid-tolerant ammonia-oxidizing bacteria. Water Research, 2021, 197, 117077.	11.3	12
49	Study on enhanced denitrification using particulate organic matter in membrane bioreactor by mechanism modeling. Chemosphere, 2013, 93, 2669-2674.	8.2	11
50	Insights into complete nitrate removal in one-stage nitritation-anammox by coupling heterotrophic denitrification. Journal of Environmental Management, 2021, 298, 113431.	7.8	11
51	Impact of impurities on vivianite crystallization for phosphate recovery from process water of hydrothermal carbonization of kitchen waste. Resources, Conservation and Recycling, 2022, 185, 106438.	10.8	11
52	Modeling of enhanced denitrification capacity with microbial storage product in MBR systems. Separation and Purification Technology, 2014, 126, 1-6.	7.9	10
53	Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Water Research, 2021, 200, 117211.	11.3	10
54	MesothermalÂpretreatmentÂusing FeCl3 enhances methane production from riceÂstraw. Renewable Energy, 2022, 188, 670-677.	8.9	10

#	Article	IF	CITATIONS
55	Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine. Environmental Research, 2020, 188, 109774.	7.5	9
56	Short-chain fatty acid (SCFA) production maximization by modeling thermophilic sludge fermentation. Environmental Science: Water Research and Technology, 2019, 5, 11-18.	2.4	8
57	Recovery of ammonium nitrate solution from urine wastewater via novel free nitrous acid (FNA)-mediated two-stage processes. Chemical Engineering Journal, 2022, 440, 135826.	12.7	8
58	Mycolicibacter acidiphilus sp. nov., an extremely acid-tolerant member of the genus Mycolicibacter. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	8
59	The impact of ultrasonic treatment on activity of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	7
60	Re-configuring mainstream anammox. Chemical Engineering Journal, 2022, 445, 136817.	12.7	6
61	Synergistic denitrification, partial nitrification - Anammox in a novel A2/O2 reactor for efficient nitrogen removal from low C/N wastewater. Journal of Environmental Management, 2022, 302, 114069.	7.8	5
62	Gravity settling and centrifugation increase the acid buffer capacity of activated sludge. Science of the Total Environment, 2022, 820, 153231.	8.0	3
63	Biodegradation of crude oil by a moderately haloalkaliphilic <i>Acinetobacter</i> strain. Petroleum Science and Technology, 0, , 1-15.	1.5	2
64	Achieving Ammonium Removal Through Anammox-Derived Feammox With Low Demand of Fe(III). Frontiers in Microbiology, 0, 13, .	3.5	1
65	Changes in the Species and Functional Composition of Activated Sludge Communities Revealed Mechanisms of Partial Nitrification Established by Ultrasonication. Frontiers in Microbiology, 0, 13, .	3.5	0