
Vera Usuelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1987513/publications.pdf Version: 2024-02-01

VEDA LISUELLI

#	Article	IF	CITATIONS
1	The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nature Communications, 2022, 13, 684.	5.8	16
2	Pharmacologically Enhanced Regulatory Hematopoietic Stem Cells Revert Experimental Autoimmune Diabetes and Mitigate Other Autoimmune Disorders. Journal of Immunology, 2022, 208, 1554-1565.	0.4	3
3	Immunogenicity and Safety of SARS-CoV-2 mRNA Vaccines in a Cohort of Patients With Type 1 Diabetes. Diabetes, 2022, 71, 1800-1806.	0.3	20
4	Anti-inflammatory effects of diet and caloric restriction in metabolic syndrome. Journal of Endocrinological Investigation, 2021, 44, 2407-2415.	1.8	27
5	Regulatory B Cells in Autoimmune Diabetes. Journal of Immunology, 2021, 206, 1117-1125.	0.4	6
6	miR-21 antagonism reprograms macrophage metabolism and abrogates chronic allograft vasculopathy. American Journal of Transplantation, 2021, 21, 3280-3295.	2.6	14
7	Hematopoietic Stem Cells in Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 694118.	2.2	7
8	The IL-8-CXCR1/2 axis contributes to diabetic kidney disease. Metabolism: Clinical and Experimental, 2021, 121, 154804.	1.5	22
9	Next-gen therapeutics to spare and expand beta-cell mass. Current Opinion in Pharmacology, 2021, 61, 77-82.	1.7	3
10	PD-1 blockade counteracts post–COVID-19 immune abnormalities and stimulates the anti–SARS-CoV-2 immune response. JCI Insight, 2021, 6, .	2.3	51
11	Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetologica, 2020, 57, 883-890.	1.2	26
12	Placental proteome abnormalities in women with gestational diabetes and large-for-gestational-age newborns. BMJ Open Diabetes Research and Care, 2020, 8, e001586.	1.2	13
13	541-P: The II-8-CXCR1/2 Axis and Its Targeting in Diabetic Kidney Disease. Diabetes, 2019, 68, 541-P.	0.3	0
14	1393-P: Alterations in the Placental Proteome in Gestational Diabetes. Diabetes, 2019, 68, 1393-P.	0.3	0
15	Sodium glucose cotransporters inhibitors in type 1 diabetes. Pharmacological Research, 2018, 133, 1-8.	3.1	20
16	Islet-Derived eATP Fuels Autoreactive CD8+ T Cells and Facilitates the Onset of Type 1 Diabetes. Diabetes, 2018, 67, 2038-2053.	0.3	17
17	Prostaglandin E2 Stimulates the Expansion of Regulatory Hematopoietic Stem and Progenitor Cells in Type 1 Diabetes. Frontiers in Immunology, 2018, 9, 1387.	2.2	15
18	P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. Journal of Clinical Investigation, 2018, 128, 3490-3503.	3.9	31

Vera Usuelli

#	Article	IF	CITATIONS
19	Embryonic Cell Extracts Ameliorate Wound Healing in Diabetic Mice. Diabetes, 2018, 67, .	0.3	Ο
20	Eyekon Is a Novel Diagnostic Tool for Diabetic Neuropathy. Diabetes, 2018, 67, 571-P.	0.3	0
21	Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype. Clinical Immunology, 2017, 178, 29-38.	1.4	19
22	Immunoevasion rather than intrinsic oncogenicity may confer MSCs from non-obese diabetic mice the ability to generate neural tumors. Acta Diabetologica, 2017, 54, 707-712.	1.2	0
23	PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science Translational Medicine, 2017, 9, .	5.8	99
24	Metabolomic Profiling in Individuals with a Failing Kidney Allograft. PLoS ONE, 2017, 12, e0169077.	1.1	39
25	The use of hematopoietic stem cells in autoimmune diseases. Regenerative Medicine, 2016, 11, 395-405.	0.8	12
26	Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site. Acta Diabetologica, 2015, 52, 917-927.	1.2	87
27	The Dark Side of Extracellular ATP in Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2015, 26, 1007-1016.	3.0	72
28	Novel therapeutic approaches for diabetic nephropathy and retinopathy. Pharmacological Research, 2015, 98, 39-44.	3.1	31
29	The rise, fall, and resurgence of immunotherapy in type 1 diabetes. Pharmacological Research, 2015, 98, 31-38.	3.1	49
30	Defective Differentiation of Regulatory FoxP3+ T Cells by Small-Intestinal Dendritic Cells in Patients With Type 1 Diabetes. Diabetes, 2011, 60, 2120-2124.	0.3	99
31	On/Off TLR Signaling Decides Proinflammatory or Tolerogenic Dendritic Cell Maturation upon CD1d-Mediated Interaction with Invariant NKT Cells. Journal of Immunology, 2010, 185, 7317-7329.	0.4	39
32	Proteomic analysis of protein <i>S</i> â€nitrosylation. Proteomics, 2008, 8, 4484-4494.	1.3	63
33	A Novel Approach to Identify Proteins Modified by Nitric Oxide:  the HIS-TAG Switch Method. Journal of Proteome Research, 2007, 6, 3224-3231.	1.8	82