
Xiao Lin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system—A 16-year field study in North China Plain. Field Crops Research, 2022, 275, 108364.	2.3	33
2	Carbon footprint analysis of sweet sorghum-based bioethanol production in the potential saline - Alkali land of northwest China. Journal of Cleaner Production, 2022, 349, 131476.	4.6	10
3	Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain. Agricultural Water Management, 2021, 243, 106502.	2.4	21
4	GROUNDWATER DEPLETION IN THE NORTH CHINA PLAIN: THE AGROHYDROLOGICAL PERSPECTIVE. Frontiers of Agricultural Science and Engineering, 2021, .	0.9	0
5	Diversified crop rotations enhance groundwater and economic sustainability of food production. Food and Energy Security, 2021, 10, e311.	2.0	30
6	Development of a direct competitive enzymeâ€linked immunosorbent assay for quantitation of sodium saccharin residue in food. Journal of Food Science, 2021, 86, 3720-3729.	1.5	1
7	Carbon footprints of grain-, forage-, and energy-based cropping systems in the North China plain. International Journal of Life Cycle Assessment, 2019, 24, 371-385.	2.2	20
8	Managing food and bioenergy crops with declining groundwater levels in the North China Plain. Field Crops Research, 2019, 234, 1-14.	2.3	28
9	Sorghum biomass and quality and soil nitrogen balance response to nitrogen rate on semiarid marginal land. Field Crops Research, 2018, 215, 12-22.	2.3	29
10	Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China. Sustainability, 2018, 10, 731.	1.6	14
11	Establishing sustainable sweet sorghum-based cropping systems for forage and bioenergy feedstock in North China Plain. Field Crops Research, 2018, 227, 144-154.	2.3	21
12	Biomass Yield and Nutrient Uptake of Energy Sorghum in Response to Nitrogen Fertilizer Rate on Marginal Land in a Semi-Arid Region. Bioenergy Research, 2017, 10, 363-376.	2.2	21
13	Effects of Nitrogen Fertilization on Soil Nitrogen for Energy Sorghum on Marginal Land in China. Agronomy Journal, 2017, 109, 636-645.	0.9	10
14	Recharge and Groundwater Use in the North China Plain for Six Irrigated Crops for an Eleven Year Period. PLoS ONE, 2015, 10, e0115269.	1.1	58
15	Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. Journal of Hydrology, 2015, 522, 428-438.	2.3	91
16	Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. Journal of Cleaner Production, 2014, 76, 131-139.	4.6	161
17	Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agricultural Water Management, 2013, 124, 20-27.	2.4	48
18	The Spatial and Temporal Variation of Water Requirement of Winter Wheat Based SIMETAW Model in Huang–Huai–Hai Farming Region. Sensor Letters, 2013, 11, 1149-1155.	0.4	1