Fadi G Akar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986712/publications.pdf Version: 2024-02-01

FADI C AKAD

#	Article	IF	CITATIONS
1	Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 1999, 99, 1385-1394.	1.6	759
2	Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovascular Diabetology, 2017, 16, 120.	2.7	303
3	Unique Topographical Distribution of M Cells Underlies Reentrant Mechanism of Torsade de Pointes in the Long-QT Syndrome. Circulation, 2002, 105, 1247-1253.	1.6	270
4	Transmural Electrophysiological Heterogeneities Underlying Arrhythmogenesis in Heart Failure. Circulation Research, 2003, 93, 638-645.	2.0	270
5	Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure. Molecular Therapy, 2014, 22, 2038-2045.	3.7	70
6	Mitochondria are sources of metabolic sink and arrhythmias. , 2011, 131, 287-294.		62
7	Renewal Theory as a Universal Quantitative Framework to Characterize Phase Singularity Regeneration in Mammalian Cardiac Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007569.	2.1	35
8	LKB1 deletion causes early changes in atrial channel expression and electrophysiology prior to atrial fibrillation. Cardiovascular Research, 2015, 108, 197-208.	1.8	31
9	Protein Phosphatase Inhibitor-1 GeneÂTherapy in a Swine Model of NonischemicÂHeart Failure. Journal of the American College of Cardiology, 2017, 70, 1744-1756.	1.2	30
10	Acute Left Ventricular Unloading Reduces Atrial Stretch and InhibitsÂAtrialÂArrhythmias. Journal of the American College of Cardiology, 2018, 72, 738-750.	1.2	27
11	The Mitochondrial Translocator Protein and Arrhythmogenesis in Ischemic Heart Disease. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-8.	1.9	26
12	Intra-tracheal gene delivery of aerosolized SERCA2a to the lung suppresses ventricular arrhythmias in a model of pulmonary arterial hypertension. Journal of Molecular and Cellular Cardiology, 2019, 127, 20-30.	0.9	23
13	Gene editing reverses arrhythmia susceptibility in humanized PLN-R14del mice: modelling a European cardiomyopathy with global impact. Cardiovascular Research, 2022, 118, 3140-3150.	1.8	23
14	Effect of bortezomib on the efficacy of AAV9.SERCA2a treatment to preserve cardiac function in a rat pressure-overload model of heart failure. Gene Therapy, 2014, 21, 379-386.	2.3	21
15	Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007382.	2.1	21
16	Reducing mitochondrial bound hexokinase II mediates transition from non-injurious into injurious ischemia/reperfusion of the intact heart. Journal of Physiology and Biochemistry, 2016, 73, 323-333.	1.3	20
17	The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Frontiers in Physiology, 2018, 9, 1518.	1.3	18
18	The Classically Cardioprotective Agent Diazoxide Elicits Arrhythmias in Type 2 Diabetes Mellitus. Journal of the American College of Cardiology, 2015, 66, 1144-1156.	1.2	17

Fadi G Akar

#	Article	IF	CITATIONS
19	Increased Afterload Following MyocardialÂInfarction Promotes Conduction-Dependent Arrhythmias ThatÂAre Unmasked by Hypokalemia. JACC Basic To Translational Science, 2017, 2, 258-269.	1.9	15
20	Impaired Right Ventricular Calcium Cycling Is an Early Risk Factor in R14del-Phospholamban Arrhythmias. Journal of Personalized Medicine, 2021, 11, 502.	1.1	12
21	Arrhythmia Mechanism and Dynamics in a Humanized Mouse Model of Inherited Cardiomyopathy Caused by Phospholamban R14del Mutation. Circulation, 2021, 144, 441-454.	1.6	10
22	Mitochondrial targets for arrhythmia suppression: is there a role for pharmacological intervention?. Journal of Interventional Cardiac Electrophysiology, 2013, 37, 249-258.	0.6	9
23	Recurrence quantification analysis of complexâ€fractionated electrograms differentiates active and passive sites during atrial fibrillation. Journal of Cardiovascular Electrophysiology, 2019, 30, 2229-2238.	0.8	9
24	Gene therapies for arrhythmias in heart failure. Pflugers Archiv European Journal of Physiology, 2014, 466, 1211-1217.	1.3	7
25	Atrial AMP-activated protein kinase is critical for prevention of dysregulation of electrical excitability and atrial fibrillation. JCI Insight, 2022, 7, .	2.3	6
26	Optical Action Potential Mapping in Acute Models of Ischemia–Reperfusion Injury: Probing the Arrhythmogenic Role of the Mitochondrial Translocator Protein. Methods in Molecular Biology, 2018, 1816, 133-143.	0.4	5
27	NAD Repletion Therapy: A Silver Bullet for HFpEF?. Circulation Research, 2021, 128, 1642-1645.	2.0	3
28	A novel exosome-based therapy for post-MI arrhythmias. European Heart Journal, 2022, , .	1.0	2
29	Emergence of Atrial Repolarization Alternans at Late Stages of Remodeling: The "Second Factor―in Atrial Fibrillation Progression?. Journal of Cardiovascular Electrophysiology, 2014, 25, 428-430.	0.8	1
30	Editorial: Arrhythmogenic Substrates in Diabetes and Obesity. Frontiers in Physiology, 2019, 10, 549.	1.3	1
31	Arrhythmia models: in vivo, in vitro and in silico. Drug Discovery Today: Disease Models, 2009, 6, 55-56.	1.2	0
32	Commentary: Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Frontiers in Bioengineering and Biotechnology, 2017, 5, 59.	2.0	0
33	Kir2.1 & Na _v 1.5 in Sickness and in Health. Circulation Research, 2018, 122, 1482-1484.	2.0	0
34	Abstract 275: Electrophysiological Consequences of AAV9 mediated SERCA2a Gene Transfer to Normal Rat Myocardium. Circulation Research, 2014, 115, .	2.0	0
35	Abstract 111: Paradoxical Exacerbation of Arrhythmias by the Cardioprotective Mitochondrial K-ATP Channel Agonist Diazoxide in Type 2 Diabetes Mellitus. Circulation Research, 2014, 115, .	2.0	0
36	Abstract 239: Selective Right-sided Electrical Remodeling In A Pure Model Of Pulmonary Hypertension Promotes Micro-reentrant Arrhythmias. Circulation Research, 2019, 125, .	2.0	0

#	Article	IF	CITATIONS
37	Abstract 14844: Ampk is Required for Maintaining Atrial Metabolism and Oxidative Stress. Circulation, 2020, 142, .	1.6	0