Clare L Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1986419/publications.pdf

Version: 2024-02-01

48 3,606 25
papers citations h-index

50 50 50 5673 all docs docs citations times ranked citing authors

276539

41

g-index

#	Article	IF	CITATIONS
1	Loss of TÂcell tolerance in the skin following immunopathology is linked to failed restoration of the dermal niche by recruited macrophages. Cell Reports, 2022, 39, 110819.	2.9	3
2	Inducible ablation of CD11c \pm cells to determine their role in skin wound repair. Immunology, 2021, 163, 105-111.	2.0	14
3	Switching between tolerance and immunity: Do counterâ€acting gene networks dictate Langerhans cell function in the skin?. BioEssays, 2021, 43, 2100072.	1.2	1
4	Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity. Journal of Clinical Investigation, 2020, 130, 1896-1911.	3.9	27
5	A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury. Science Immunology, 2019, 4, .	5.6	41
6	CTLA-4–mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Science Immunology, 2019, 4, .	5.6	100
7	Editorial: Langerhans Cells and How Skin Pathology Reshapes the Local Immune Environment. Frontiers in Immunology, 2019, 10, 139.	2.2	2
8	Acute Graft-Versus-Host Disease Disrupts Fibroblastic Reticular Cell Expression of Tissue-Restricted Antigens and Impairs Peripheral Regulation of Autoaggressive T Cells. Biology of Blood and Marrow Transplantation, 2018, 24, S73.	2.0	0
9	Tumor-Resident Dendritic Cells and Macrophages Modulate the Accumulation of TCR-Engineered T Cells in Melanoma. Molecular Therapy, 2018, 26, 1471-1481.	3.7	19
10	Unraveling the Mechanisms of Cutaneous Graft-Versus-Host Disease. Frontiers in Immunology, 2018, 9, 963.	2.2	30
11	Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease. JCI Insight, 2018, 3, .	2.3	23
12	Redirection to the bone marrow improves T cell persistence and antitumor functions. Journal of Clinical Investigation, 2018, 128, 2010-2024.	3.9	39
13	Dendritic Cells Cross-Present Immunogenic Lentivector-Encoded Antigen from Transduced Cells to Prime Functional T Cell Immunity. Molecular Therapy, 2017, 25, 504-511.	3.7	8
14	Targeting therapeutic T cells to the bone-marrow niche. Lancet, The, 2017, 389, S55.	6.3	0
15	Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine, 2017, 9, .	5 . 8	512
16	Redefining the Role of Langerhans Cells As Immune Regulators within the Skin. Frontiers in Immunology, 2017, 8, 1941.	2.2	81
17	Graft-Versus-Host Disease Is Defined By Tissue-Autonomous Regulation of Effector T Cells. Biology of Blood and Marrow Transplantation, 2016, 22, S58.	2.0	О
18	Depletion of CD11c ⁺ cells in the CD11c.DTR model drives expansion of unique CD64 ⁺ Ly6C ⁺ monocytes that are poised to release TNF‣±. European Journal of Immunology, 2016, 46, 192-203.	1.6	10

#	Article	IF	CITATIONS
19	Editorial: Faux amis: Langerin-expressing DC in humans and mice. Journal of Leukocyte Biology, 2015, 97, 621-623.	1.5	1
20	G-CSF mobilizes CD34 ⁺ regulatory monocytes that inhibit graft-versus-host disease. Science Translational Medicine, 2015, 7, 281ra42.	5 . 8	99
21	OX40- and CD27-Mediated Costimulation Synergizes with Anti–PD-L1 Blockade by Forcing Exhausted CD8+ T Cells To Exit Quiescence. Journal of Immunology, 2015, 194, 125-133.	0.4	65
22	A Systems Immunology Approach to Graft-Versus-Host Disease. Blood, 2014, 124, 3812-3812.	0.6	0
23	Cell-intrinsic regulation of murine dendritic cell function and survival by prereceptor amplification of glucocorticoid. Blood, 2013, 122, 3288-3297.	0.6	9
24	Dendritic cells in tissues: in situ stimulation of immunity and immunopathology. Trends in Immunology, 2012, 33, 8-13.	2.9	18
25	CD4 Cells Engineered to Express an MHC Class I Restricted TCR Can Rescue CD8 Cells Tolerized to Tumour-Associated Antigens. Blood, 2012, 120, 952-952.	0.6	0
26	The Role of Direct Presentation by Donor Dendritic Cells in Rejection of Minor Histocompatibility Antigen-Mismatched Skin and Hematopoietic Cell Grafts. Transplantation, 2011, 91, 154-160.	0.5	13
27	Langerhans cells regulate cutaneous injury by licensing CD8 effector cells recruited to the skin. Blood, 2011, 117, 7063-7069.	0.6	41
28	PDâ€L1 coâ€stimulation contributes to ligandâ€induced T cell receptor downâ€modulation on CD8 ⁺ T cells. EMBO Molecular Medicine, 2011, 3, 581-592.	3.3	234
29	Conventional Dendritic Cells Are Required for the Activation of Helper-Dependent CD8 T Cell Responses to a Model Antigen After Cutaneous Vaccination with Lentiviral Vectors. Journal of Immunology, 2011, 186, 4565-4572.	0.4	32
30	Langerhans cells are negative regulators of the anti- <i>Leishmania</i> response. Journal of Experimental Medicine, 2011, 208, 885-891.	4.2	151
31	Langerhans cells are not required for epidermal $V\hat{l}^3$ 3 T cell homeostasis and function. Journal of Leukocyte Biology, 2011, 90, 61-68.	1.5	10
32	Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation. Journal of Clinical Investigation, 2010, 120, 3855-3868.	3.9	52
33	Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3312-3317.	3.3	209
34	Keratinocytes Function as Accessory Cells for Presentation of Endogenous Antigen Expressed in the Epidermis. Journal of Investigative Dermatology, 2009, 129, 2805-2817.	0.3	63
35	Host CD11c+ Dendritic Cells Are Required for Priming the Lympho-Haematopoietic Graft-Versus-Host Response but Not Graft-Versus-Host Disease Blood, 2009, 114, 2450-2450.	0.6	0
36	Clearance of influenza virus from the lung depends on migratory langerin+CD11bâ^' but not plasmacytoid dendritic cells. Journal of Experimental Medicine, 2008, 205, 1621-1634.	4.2	419

#	Article	IF	CITATIONS
37	Peripheral Alloantigen Drives Early Dysfunction and Eventual Exhaustion of CTL Following Delayed Donor Leukocyte Infusions Blood, 2008, 112, 2346-2346.	0.6	0
38	Langerhans Cells Are Required for Efficient Presentation of Topically Applied Hapten to T Cells. Journal of Immunology, 2007, 179, 6830-6835.	0.4	108
39	Deletional Self-Tolerance to a Melanocyte/Melanoma Antigen Derived from Tyrosinase Is Mediated by a Radio-Resistant Cell in Peripheral and Mesenteric Lymph Nodes. Journal of Immunology, 2007, 179, 993-1003.	0.4	132
40	DC ablation in mice: promises, pitfalls, and challenges. Trends in Immunology, 2007, 28, 525-531.	2.9	149
41	Nicotinic Acid-Induced Flushing Is Mediated by Activation of Epidermal Langerhans Cells. Molecular Pharmacology, 2006, 70, 1844-1849.	1.0	194
42	A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells toLeishmania mexicana. European Journal of Immunology, 2005, 35, 476-486.	1.6	43
43	Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function. BMC Biology, 2005, 3, 8.	1.7	40
44	Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. Journal of Cell Biology, 2005, 169, 569-576.	2.3	390
45	Uncompromised generation of a specific H-2DM-dependent peptide-MHC class Il complex from exogenous antigen inLeishmania mexicana-infected dendritic cells. European Journal of Immunology, 2003, 33, 3504-3513.	1.6	6
46	Lipopolysaccharide or Whole Bacteria Block the Conversion of Inflammatory Monocytes into Dendritic Cells In Vivo. Journal of Experimental Medicine, 2003, 198, 1253-1263.	4.2	107
47	Rapid constitutive generation of a specific peptide-MHC class II complex from intact exogenous protein in immature murine dendritic cells. European Journal of Immunology, 2002, 32, 3246-3255.	1.6	13
48	Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. European Journal of Immunology, 2001, 31, 876-883.	1.6	98