Antonio R Tome

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	2.4	8
2	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	27.8	26
3	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
4	Data Acquisition System of the CLOUD Experiment at CERN. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	2
5	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	2.4	10
6	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94
7	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	4.9	38
8	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	4.9	12
9	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	27.8	169
10	Size-dependent influence of NO _x on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	10.3	61
11	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Technology, 2020, 54, 7911-7921.	10.0	66
12	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
13	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
14	Molecular understanding of new-particle formation from <i>α</i> -pinene between â~'50 and +25 °C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	4.9	68
15	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	2.7	52
16	CFD Analysis of Flow Structures in a Mixing Chamber. , 2019, , .		0
17	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	4.9	56
18	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	10.3	164

ΑΝΤΟΝΙΟ **R** ΤΟΜΕ

#	Article	IF	CITATIONS
19	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	7.1	118
20	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	4.9	50
21	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	3.3	99
22	Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.	3.3	16
23	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	3.3	17
24	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	3.3	71
25	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	27.8	540
26	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	27.8	528
27	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	7.1	107
28	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	12.6	289
29	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	12.8	116
30	Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of <i>l±</i> -pinene. Atmospheric Chemistry and Physics, 2016, 16, 6495-6509.	4.9	71
31	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	4.9	47
32	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	4.9	29
33	Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments. Atmospheric Chemistry and Physics, 2016, 16, 3651-3664.	4.9	11
34	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	4.9	46
35	Thermodynamics of the formation of sulfuric acid dimers in the binary (H ₂ SO ₄ –H <sub and ternary (H₂SO₄–H<sub< td=""><td>b> 4.9 b></td><td>227 2</td></sub<></sub 	b> 4.9 b>	227 2
36	system. Atmospheric Chemistry and Physics, 2015, 15, 10701 10721. Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	4.9	17

ΑΝΤΟΝΙΟ R ΤΟΜΕ

#	Article	IF	CITATIONS
37	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	4.9	84
38	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Technology, 2014, 48, 13675-13684.	10.0	51
39	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	12.6	456
40	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	7.1	208
41	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	27.8	774
42	Evolution of nanoparticle composition in CLOUD in presence of sulphuric acid, ammonia and organics. , 2013, , .		1
43	The CLOUD data acquisition system and online derivation of nucleation rates. , 2013, , .		0
44	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	7.1	300
45	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	4.9	33
46	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	27.8	1,114
47	Spatial structure of the evolution of surface temperatureÂ(1951–2004). Climatic Change, 2009, 93, 269-284.	3.6	15
48	The HERA-B database services. Computer Physics Communications, 2001, 140, 172-178.	7.5	4
49	Entropy budget of the atmosphere. Journal of Geophysical Research, 1991, 96, 10981-10988.	3.3	109