Ping Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985531/publications.pdf

Version: 2024-02-01

14614 16605 18,328 285 66 123 h-index citations g-index papers 293 293 293 11760 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Highly Efficient Blue Organic Light-Emitting Diode Based on a Pyrene [4,5- <i>d</i>]Imidazole-Pyrene Molecule. CCS Chemistry, 2022, 4, 214-227.	4.6	38
2	Highly Efficient Multiâ€Resonance Thermally Activated Delayed Fluorescence Material with a Narrow Full Width at Halfâ€Maximum of 0.14ÂeV. Small, 2022, 18, e2106462.	5.2	50
3	Recent progress of sulphur-containing high-efficiency organic light-emitting diodes (OLEDs). Journal of Materials Chemistry C, 2022, 10, 4497-4520.	2.7	35
4	Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8 % and Extremely Low Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2022, 61, .	7.2	78
5	Rh(<scp>iii</scp>)-Catalyzed Câ€"H bond activation/annulation reactions of arylacyl ammonium salts with 4-diazoisochroman-3-imines and 4-diazoisoquinolin-3-ones. Organic and Biomolecular Chemistry, 2022, 20, 1900-1906.	1.5	5
6	Preparation and photoluminescent properties of amino 2,1,3â€benzoxadiazoles (Amâ€BODs) with Dâ€Aâ€D and Dâ€Aâ€A conjugation systems. Chemistry - an Asian Journal, 2022, , .	1.7	0
7	Two different implementation strategies for highly efficient non-doped fluorescent organic light-emitting diodes based on benzothiadiazole derivatives. Chemical Engineering Journal, 2022, 435, 135010.	6.6	11
8	Piezochromic Luminescence of Cyano Substituted E/Z Isomeric Derivatives: Different Responses to External Stimuli. Advanced Optical Materials, 2022, 10, .	3.6	8
9	Cu(II)-Catalyzed Synthesis of 4-(1,4,5,6-Tetrahydropyridin-3-yl)-1,4-dihydroisoquinolin-3-ones from 4-Diazoisoquinolin-3-ones. Journal of Organic Chemistry, 2022, 87, 4088-4096.	1.7	3
10	Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property. Chemical Research in Chinese Universities, 2022, 38, 1461-1466.	1.3	2
11	Base Promoted Three-Component Annulation of 4-Diazoisochroman-3-imines with Dimethylsulfonium Ylides: Synthesis of Highly Functionalized Isochromeno[4,3- <i>c</i>) pyridazines. Journal of Organic Chemistry, 2021, 86, 455-465.	1.7	10
12	Highly efficient red fluorescent OLEDs based on diphenylacridine-naphthothiadiazole derivatives with upper level intersystem crossing. Chemical Engineering Journal, 2021, 404, 127055.	6.6	28
13	Study of configuration differentia and highly efficient deep-red thermally activated delayed fluorescent organic light-emitting diodes based on phenanthro[4,5- <i>fgh</i> jquinoxaline derivatives. Journal of Materials Chemistry C, 2021, 9, 7392-7399.	2.7	17
14	Recent advances in the synthesis of indole embedded heterocycles with 3-diazoindolin-2-imines. Organic Chemistry Frontiers, 2021, 8, 2059-2078.	2.3	32
15	Syntheses of 4-allyl-/4-allenyl-4-(arylthio)-1,4-dihydroisoquinolin-3-ones <i>via</i> the photochemical Doyle–Kirmse reaction. Organic and Biomolecular Chemistry, 2021, 19, 6341-6345.	1.5	7
16	AIE-nanoparticle assisted ultra-deep three-photon microscopy in the <i>in vivo </i> mouse brain under 1300 nm excitation. Materials Chemistry Frontiers, 2021, 5, 3201-3208.	3.2	18
17	Visible-Light-Induced Photocatalyst-Free Aerobic Hydroxyazidations of Indoles: A Highly Regioselective and Stereoselective Synthesis of trans-2-Azidoindolin-3-ols. Journal of Organic Chemistry, 2021, 86, 7955-7962.	1.7	7
18	Efficient Red Electroluminescence From Phenanthro[9,10â€d]imidazoleâ€Naphtho[2,3][1,2,5]thiadiazole Donorâ€Acceptor Derivatives. Chemistry - an Asian Journal, 2021, 16, 1942-1948.	1.7	4

#	Article	IF	CITATIONS
19	Visible-Light-Induced C(sp ²)–C(sp ³) Coupling Reaction for the Regioselective Synthesis of 3-Functionalized Coumarins. Journal of Organic Chemistry, 2021, 86, 9552-9562.	1.7	8
20	Photocatalytic Approach for Construction of 5,6-Dihydroimidazo[2,1- <i>a</i>]isoquinolines and Their Luminescent Properties. Journal of Organic Chemistry, 2021, 86, 8101-8111.	1.7	13
21	Luminogens Based on Cyanoâ€Substituted Anthracene Isomers: Different Molecular Packing and Distinct Piezochromic Properties. Advanced Optical Materials, 2021, 9, 2100813.	3.6	16
22	Delocalized Excitation or Intramolecular Energy Transfer in Pyrene Core Dendrimers. Journal of Physical Chemistry Letters, 2021, 12, 7717-7725.	2.1	1
23	Anthracene-based emitters for highly efficient deep blue organic light-emitting diodes with narrow emission spectrum. Chemical Engineering Journal, 2021, 426, 131351.	6.6	51
24	Preparation of 4-Diazoisoquinolin-3-ones via Dimroth Rearrangement and Their Extension to 4-Aryltetrahydroisoquinolin-3-ones. Organic Letters, 2020, 22, 26-30.	2.4	26
25	Efficient Nondoped Pure Blue Organic Lightâ€Emitting Diodes Based on an Anthracene and 9,9â€Diphenylâ€9,10â€dihydroacridine Derivative. Chemistry - an Asian Journal, 2020, 15, 163-168.	1.7	16
26	Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index. Nano Energy, 2020, 68, 104325.	8.2	61
27	Density Functional Theory-Assisted Electrochemical Assay Manipulated by a Donor–Acceptor Structure toward Pharmaceutical Diagnostic. Analytical Chemistry, 2020, 92, 15297-15305.	3.2	9
28	Preparation and photophysical properties of quinazoline-based fluorophores. RSC Advances, 2020, 10, 30297-30303.	1.7	12
29	Preparation and Photoluminescent Properties of Three 5â€Amino Benzothiadiazoles (5â€amBTDs). Chemistry - an Asian Journal, 2020, 15, 3519-3526.	1.7	4
30	Syntheses of 2-Iminoindolin-3-ones and 2-Alknyl-2,3-dihydroquinazolin-4(1 <i>H</i>)-ones from 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2020, 85, 11766-11777.	1.7	10
31	Non-doped organic light-emitting diodes based on phenanthroimidazole-triphenylamine derivatives with a low efficiency roll-off of 9% at a high luminance of 10 000 cd m ^{â^'2} . Journal of Materials Chemistry C, 2020, 8, 14446-14452.	2.7	14
32	TfOH-promoted synthesis of 4,5-dihydrooxazolo[5,4- $\langle i \rangle$ c $\langle i \rangle$] isoquinolines $\langle i \rangle$ via $\langle i \rangle$ formal [3 + 2] cycloaddition of 4-diazoisoquinolin-3-one and benzonitriles. Organic and Biomolecular Chemistry, 2020, 18, 7671-7676.	1.5	8
33	Pyrene[4,5- <i>d</i>) jimidazole-Based Derivatives with Hybridized Local and Charge-Transfer State for Highly Efficient Blue and White Organic Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Applied Materials & Diodes with Low Efficiency Roll-Off. ACS Applied Materials & Diodes with Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. ACS Applied Materials & Diodes With Low Efficiency Roll-Off. According to the Diodes With Low Efficiency Roll-Off. According to	4.0	70
34	Multiple strategies towards high-efficiency white organic light-emitting diodes by the vacuum deposition method. Journal of Materials Chemistry C, 2020, 8, 5636-5661.	2.7	27
35	Synthesis of 8-Alkoxy-5 <i>H</i> isochromeno[3,4- <i>c</i> jisoquinolines and 1-Alkoxy-4-arylisoquinolin-3-ols through Rh(III)-Catalyzed C–H Functionalization of Benzimidates with 4-Diazoisochroman-3-imines and 4-Diazoisoquinolin-3-ones. Journal of Organic Chemistry, 2020, 85, 5525-5535.	1.7	20
36	A single-molecule conformation modulating crystalline polymorph of a physical π–π pyrene dimer: blue and green emissions of a pyrene excimer. Journal of Materials Chemistry C, 2020, 8, 3367-3373.	2.7	46

#	Article	IF	CITATIONS
37	High-efficiency near-infrared fluorescent organic light-emitting diodes with small efficiency roll-off based on AIE-active phenanthro[9,10- $<$ i> $<$ d $<$ di> $<$ di) diministry constants of Materials Chemistry C, 2020, 8, 6883-6890.	2.7	19
38	Highly efficient deep-blue organic light-emitting diodes based on pyreno[4,5- <i>d</i>)imidazole-anthracene structural isomers. Journal of Materials Chemistry C, 2019, 7, 10273-10280.	2.7	43
39	General Approach To Construct Azepino[2,3- <i>b</i> :4,5- <i>b</i> ′]diindoles, Azocino[2,3- <i>b</i> :4,5- <i>b</i> ;′]diindoles, and Azonino[2,3- <i>b</i> ;4,5- <i>b</i> ;′]diindoles via Rh(II)-Catalyzed Reactions of 3-Diazoindolin-2-imines with 3-(Bromoalkyl)indoles. Journal of Organic Chemistry, 2019, 84, 9561-9569.	1.7	11
40	Assistant acceptor induced hybrid local and charge transfer blue-emissive electro-fluorescent materials based on locally excited triphenylamine-phenanthroimidazole backbone. Organic Electronics, 2019, 75, 105404.	1.4	15
41	Emissions from a triphenylamine–benzothiadiazole–monocarbaborane triad and its applications as a fluorescent chemosensor and a white OLED component. Journal of Materials Chemistry C, 2019, 7, 2430-2435.	2.7	25
42	Efficient Nonâ€doped Blue Fluorescent Organic Lightâ€Emitting Diodes Based on Anthracene–Triphenylethylene Derivatives. Chemistry - an Asian Journal, 2019, 14, 1004-1012.	1.7	18
43	Highly efficient luminescent benzoylimino derivative and fluorescent probe from a photochemical reaction of imidazole as an oxygen sensor. Chemical Communications, 2019, 55, 977-980.	2.2	29
44	Copperâ€Catalyzed Dimerization of Sulfoxonium Ylides with 3â€Diazoindolinâ€2â€imines: A Practical and Efficient Approach to Spiro[cyclopropaneâ€1,3′â€indolin]â€2′â€imines. European Journal of Organic Chemi 2019, 2019, 4447-4456.	stury,	17
45	Phenothiazinen-Dimesitylarylborane-Based Thermally Activated Delayed Fluorescence: High-Performance Non-doped OLEDs With Reduced Efficiency Roll-Off at High Luminescence. Frontiers in Chemistry, 2019, 7, 373.	1.8	7
46	Butterfly-shaped π-extended benzothiadiazoles as promising emitting materials for white OLEDs. Journal of Materials Chemistry C, 2019, 7, 6706-6713.	2.7	33
47	Copper-Carbene-Triggered Electrophilic Cyclization of <i>>o</i> -Hydroxyarylenaminones with 3-Diazoindolin-2-imines: Synthesis of 3-Indolyl-4 <i>H</i> -chromen-4-ones and Pyrido[2,3- <i>b</i> :6,5- <i>b</i> :′]diindoles. Journal of Organic Chemistry, 2019, 84, 6395-6404.	1.7	17
48	New Strategy for Ultrasensitive Aptasensor Fabrication: D–A–D Constitution as a Charge Transfer Platform and Recognition Element. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17894-17901.	4.0	10
49	Palladium-Catalyzed Synthesis of 3-Haloindol-2-amines from 3-Diazoindolin-2-imines and Alkyl Halides. Journal of Organic Chemistry, 2019, 84, 6655-6668.	1.7	9
50	3-Amino-fluorene-2,4-dicarbonitriles (AFDCs) as Photocatalysts for the Decarboxylative Arylation of α-Amino Acids and α-Oxy Acids with Arylnitriles. Organic Letters, 2019, 21, 2130-2133.	2.4	36
51	Upper Excited Triplet State-Mediated Intersystem Crossing for Anti-Kasha's Fluorescence: Potential Application in Deep-Ultraviolet Sensing. Journal of Physical Chemistry C, 2019, 123, 5761-5766.	1.5	21
52	Rh(III)-Catalyzed Synthesis of 3-Amino-4-arylisoquinolinones from 4-Diazoisochroman-3-imines and $\langle i \rangle N \langle i \rangle$ -Methoxybenzamides. Organic Letters, 2019, 21, 1497-1501.	2.4	24
53	Preparation of spiro[imidazolidine-4,3â \in 2-indolin]-2â \in 2-imines <i>via</i> copper(<scp>i</scp>)-catalyzed formal [2 + 2 + 1] cycloaddition of 3-diazoindolin-2-imines and triazines. Organic and Biomolecular Chemistry, 2019, 17, 8849-8852.	1.5	21
54	Highly efficient nondoped blue organic light-emitting diodes with high brightness and negligible efficiency roll-off based on anthracene-triazine derivatives. Journal of Materials Chemistry C, 2019, 7, 14881-14888.	2.7	35

#	Article	IF	CITATIONS
55	Molecular understanding of diphenylether-, 9,9-biphenylfluorene- and tetraphenylsilane-centered wide bandgap host materials for highly efficient blue phosphorescent OLEDs. Dyes and Pigments, 2019, 160, 898-908.	2.0	13
56	Synthesis and Characteristics of Organic Redâ€Emissive Materials Based on Phenanthro[9,10â€ <i>d</i>) jimidazole. Chemistry - an Asian Journal, 2019, 14, 821-827.	1.7	7
57	Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced three-photon near-infrared emission for <i>in vivo</i> brain angiography. Nanoscale, 2018, 10, 10025-10032.	2.8	40
58	Preparation of Benzo[<i>c</i>)carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1 <i>H</i> -indoles with Ketenimines and Subsequent Oxidative Cyclization. Organic Letters, 2018, 20, 1426-1429.	2.4	40
59	A copper-catalyzed reaction of 3-diazoindolin-2-imines with 2-(phenylamino)ethanols: convenient access to spiro[indoline-3,2′-oxazolidin]-2-imines. Chemical Communications, 2018, 54, 1529-1532.	2.2	27
60	Efficient Nondoped Blue Fluorescent Organic Lightâ€Emitting Diodes (OLEDs) with a High External Quantum Efficiency of 9.4% @ 1000 cd m ^{â°'2} Based on Phenanthroimidazoleâ°'Anthracene Derivative. Advanced Functional Materials, 2018, 28, 1705813.	7.8	193
61	Synthesis and properties of wide bandgap polymers based on tetraphenylsilane and their applications as hosts in electrophosphorescent devices. New Journal of Chemistry, 2018, 42, 3344-3349.	1.4	12
62	Direct reduction of metal ions based on perylene diimide derivative radical anion as an electron-transfer mediator and potential application in detection of oxidizing metal ions. Sensors and Actuators B: Chemical, 2018, 254, 1141-1147.	4.0	6
63	Efficient near-infrared emission based on donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Dyes and Pigments, 2018, 149, 430-436.	2.0	44
64	Convenient synthesis of 2-amino-3-(arylthio)indoles via the Rh-catalyzed reaction of 3-diazoindol-2-imines with thioesters. Organic and Biomolecular Chemistry, 2018, 16, 439-443.	1.5	18
65	Copper-Catalyzed Syntheses of 3-Allyl-3-arylthioindolin-2-imines and 3-Allenyl-3-arylthioindolin-2-imines from 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2018, 83, 13956-13964.	1.7	14
66	Expression of anti-Kasha's emission from amino benzothiadiazole and its utilization for fluorescent chemosensors and organic light emitting materials. Journal of Materials Chemistry C, 2018, 6, 7864-7873.	2.7	31
67	Preparation of Cyano-Substituted Tetraphenylethylene Derivatives and Their Applications in Solution-Processable OLEDs. Molecules, 2018, 23, 190.	1.7	5
68	Photo-physical properties of an opto-electronic material based on triphenylamine and diphenylfumaronitrile. Journal of Luminescence, 2018, 204, 327-332.	1,5	9
69	Breaking the Efficiency Limit of Fluorescent OLEDs by Hybridized Local and Charge-Transfer Host Materials. Journal of Physical Chemistry Letters, 2018, 9, 5240-5245.	2.1	66
70	E/Z isomerization, solvatachromism and aggregation-induced emission enhancement of donor–acceptor type oligo(p-phenylene vinylene)s. Faraday Discussions, 2017, 196, 163-176.	1.6	7
71	Efficient Deepâ€Blue Electroluminescence Based on Phenanthroimidazoleâ€Dibenzothiophene Derivatives with Different Oxidation States of the Sulfur Atom. Chemistry - an Asian Journal, 2017, 12, 552-560.	1.7	28
72	The effect of different binding sites on the optical and electronic properties of tetraphenylethylene-substituted thiophene isomers. Journal of Materials Chemistry C, 2017, 5, 2552-2558.	2.7	26

#	Article	IF	Citations
73	Turning on the solid emission from non-emissive 2-aryl-3-cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Materials Chemistry Frontiers, 2017, 1, 1858-1865.	3.2	27
74	From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-triazoles. Journal of Organic Chemistry, 2017, 82, 5294-5300.	1.7	18
75	Dual fluorescence polymorphs: Wide-range emission from blue to red regulated by TICT and their dynamic electron state behavior under external pressure. Dyes and Pigments, 2017, 145, 294-300.	2.0	19
76	Rh-Catalyzed Annulations of <i>N</i> -Methoxybenzamides and Ketenimines: Sterically and Electronically Controlled Synthesis of Isoquinolinones and Isoindolinones. Journal of Organic Chemistry, 2017, 82, 3787-3797.	1.7	26
77	Rhodium-Catalyzed Cycloadditions between 3-Diazoindolin-2-imines and 1,3-Dienes. Organic Letters, 2017, 19, 1630-1633.	2.4	59
78	Convenient preparation of 4-diazoisochroman-3-imines and 3-subsituted 3,5-dihydroisochromeno[3,4-d][1,2,3]triazoles. Chemical Communications, 2017, 53, 3769-3772.	2.2	40
79	Highly efficient and stable pure blue nondoped organic light-emitting diodes at high luminance based on phenanthroimidazole-pyrene derivative enabled by triplei-triplet annihilation. Dyes and Pigments, 2017, 142, 189-197.	2.0	54
80	Synthesis and properties of polymeric host materials constructed by silane-carbazole backbone and electron-affinitive cyanohexyl substituent for blue phosphorescence dopant. Chemical Research in Chinese Universities, 2017, 33, 287-293.	1.3	1
81	Enhanced Sensitivity and Piezochromic Contrast through Singleâ€Direction Extension of Molecular Structure. Chemistry - A European Journal, 2017, 23, 773-777.	1.7	40
82	Electropolymerized AlEâ€active polymer film with high quantum efficiency and its application in OLED. Journal of Polymer Science Part A, 2017, 55, 707-715.	2.5	16
83	4-Diazoisochroman-3-imines: A Class of Metal Carbene Precursors for the Synthesis of Isochromene Derivatives. Journal of Organic Chemistry, 2017, 82, 10953-10959.	1.7	24
84	D-A structured high efficiency solid luminogens with tunable emissions: Molecular design and photophysical properties. Chinese Chemical Letters, 2017, 28, 2133-2138.	4.8	26
85	Preparation of 2-Amino-3-arylindoles via Pd-Catalyzed Coupling between 3-Diazoindolin-2-imines and Arylboronic Acids as well as Their Extension to 3-Aryl-3-fluoroindolin-2-imines. Organic Letters, 2017, 19, 4604-4607.	2.4	29
86	BF ₃ -Promoted Divergent Reactions between Tryptophols and Propargylic Alcohols. Organic Letters, 2017, 19, 4114-4117.	2.4	27
87	Preparation of Spiro[indene-1,1′-isoindolin]-3′-ones via Sulfuric Acid-Promoted Cascade Cyclization. Journal of Organic Chemistry, 2017, 82, 8407-8418.	1.7	14
88	Stable p/nâ€Dopable Conducting Redox Polymers for Highâ€Voltage Pseudocapacitor Electrode Materials: Structure–Performance Relationship and Detailed Investigation into Chargeâ€Trapping Effect. Advanced Energy Materials, 2017, 7, 1701063.	10.2	52
89	Efficient Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes Based on Donor–Acceptor Architecture: An Improved Emissive State from Mixing to Hybridization. Advanced Optical Materials, 2017, 5, 1700441.	3.6	71
90	Bright AIE Nanoparticles with F127 Encapsulation for Deepâ€Tissue Threeâ€Photon Intravital Brain Angiography. Advanced Healthcare Materials, 2017, 6, 1700685.	3.9	61

#	Article	IF	CITATIONS
91	Preparation of 9,10-diarylphenanthrene derivative and its application in full color emitters synthesis. Chemical Research in Chinese Universities, 2017, 33, 574-580.	1.3	1
92	Rh-Catalyzed Conversion of 3-Diazoindolin-2-imines to $5 < i > H < / i > -Pyrazino[2,3-< i > b < / i >] indoles with Photoluminescent Properties. Organic Letters, 2017, 19, 6514-6517.$	2.4	49
93	TfOH-Catalyzed Reaction between 3-Diazoindolin-2-imines and Electron-Rich Arenes: Access to 3-Aryl-2-aminoindoles. Journal of Organic Chemistry, 2017, 82, 12640-12646.	1.7	13
94	\hat{l}_{\pm} -Amidino Rhodium Carbenes: Key Intermediates for the Preparation of (<i>E</i>)-2-Aminomethylene-3-oxoindoles and Pyranoindoles. Organic Letters, 2016, 18, 3682-3685.	2,4	34
95	Excimer-induced high-efficiency fluorescence due to pairwise anthracene stacking in a crystal with long lifetime. Chemical Communications, 2016, 52, 7356-7359.	2,2	164
96	Synthesis of 2,3â€Disubstituted Quinolines via Ketenimine or Carbodiimide Intermediates. Chemistry - A European Journal, 2016, 22, 15144-15150.	1.7	20
97	Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. ACS Applied Materials & Description (2016), 8, 24295-24299.	4.0	27
98	Construction of Pyrrolo[1,2- <i>a</i>]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1 <i>H</i> -indoles with Ketenimines and Subsequent Base-Promoted Cyclization. Organic Letters, 2016, 18, 4706-4709.	2.4	46
99	High performance, flexible, poly(3,4-ethylenedioxythiophene) supercapacitors achieved by doping redox mediators in organogel electrolytes. Journal of Power Sources, 2016, 332, 413-419.	4.0	35
100	Highly Efficient Deep Blue Organic Light-Emitting Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 28771-28779.	4.0	107
101	Highly efficient organic light emitting diodes based on a D–A–D type dibenzothiophene derivative exhibiting thermally activated delayed fluorescence with small ΔE _{ST} . Journal of Materials Chemistry C, 2016, 4, 10205-10208.	2.7	35
102	Rh-Catalyzed annulations of N-methoxybenzamides with ketenimines: synthesis of 3-aminoisoindolinones and 3-diarylmethyleneisoindolinones with strong aggregation induced emission properties. Chemical Communications, 2016, 52, 10676-10679.	2.2	27
103	Adjusting Nitrogen Atom Orientations of Pyridine Ring in Tetraphenylsilane-Based Hosts for Highly Efficient Blue Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 24793-24802.	4.0	34
104	Solution-processed UV light emitting diode based on butyltriphenylsilane modified phenanthro[9,10-d]imidazole with high efficiency. RSC Advances, 2016, 6, 81744-81749.	1.7	8
105	Preparation of 3-Aryl-2-aminoindoles via Rhodium-Catalyzed Coupling Reaction between 2-Arylpyridines and 3-Diazoindolin-2-imines. Journal of Organic Chemistry, 2016, 81, 9433-9437.	1.7	27
106	Efficient deep-blue non-doped organic light-emitting diode with improved roll-off of efficiency based on hybrid local and charge-transfer excited state. RSC Advances, 2016, 6, 70085-70090.	1.7	44
107	Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3041-3049.	4.0	126
108	An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm ² V ^{â^1} s ^{â^1} . Chemical Communications, 2016, 52, 2370-2373.	2.2	73

#	Article	IF	Citations
109	Efficient pyrene-imidazole derivatives for organic light-emitting diodes. RSC Advances, 2016, 6, 17239-17245.	1.7	30
110	Unique piezochromic fluorescence behavior of organic crystal of carbazole-substituted CNDSB. Chemical Communications, 2016, 52, 3836-3839.	2.2	131
111	Towards stable deep-blue emission and low efficiency roll-off in OLEDs based on phenanthroimidazole dimers. Journal of Materials Chemistry C, 2016, 4, 1886-1894.	2.7	40
112	Copper-Catalyzed Preparation of 2-Aryl-3-cyanobenzofurans with Bright Blue Photoluminescence. Organic Letters, 2016, 18, 728-731.	2.4	16
113	A highly luminescent organic crystal with the well-balanced charge transport property: The role of cyano-substitution in the terminal phenyl unit of distyrylbenzene. Organic Electronics, 2016, 28, 287-293.	1.4	8
114	Preparation of 1,2,5â€Trisubstituted 1 <i>H</i> â€Imidazoles from Ketenimines and PropÂargÂylic Amines by Silverâ€Catalyzed or Iodineâ€Promoted Electrophilic Cyclization Reaction of Alkynes. European Journal of Organic Chemistry, 2015, 2015, 5789-5797.	1.2	31
115	Highly Efficient Solid‧tate Nearâ€Infrared Emitting Material Based on Triphenylamine and Diphenylfumaronitrile with an EQE of 2.58% in Nondoped Organic Lightâ€Emitting Diode. Advanced Functional Materials, 2015, 25, 7521-7529.	7.8	181
116	Construction of Multifunctional 3-Amino-2-carbamimidoylacrylamides and Their Crystalline Channel-Type Inclusion Complexes. Journal of Organic Chemistry, 2015, 80, 5842-5850.	1.7	9
117	Isomers of Pyrene–Imidazole Compounds: Synthesis and Configuration Effect on Optical Properties. Organic Letters, 2015, 17, 6138-6141.	2.4	47
118	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	7.8	381
119	Copper-catalyzed multi-component synthesis of acrylamidines and benzoimidazoles. Organic Chemistry Frontiers, 2015, 2, 1346-1351.	2.3	12
120	Tailoring Excited-State Properties and Electroluminescence Performance of Donor–Acceptor Molecules through Tuning the Energy Level of the Charge-Transfer State. Journal of Physical Chemistry C, 2015, 119, 17800-17808.	1.5	76
121	Thiol–bromo click polymerization for multifunctional polymers: synthesis, light refraction, aggregation-induced emission and explosive detection. Polymer Chemistry, 2015, 6, 97-105.	1.9	46
122	Wide bandgap materials design toward tunable bandgap and increased carries injection property: silane interrupting π-conjugation together with peripheralcarbazolyl substituents. RSC Advances, 2015, 5, 21596-21603.	1.7	2
123	Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor–acceptor molecule. Chemical Science, 2015, 6, 3797-3804.	3.7	245
124	Efficient Deep Blue Electroluminescence with an External Quantum Efficiency of 6.8% and CIE _{<i>y</i>} < 0.08 Based on a Phenanthroimidazoleâ€"Sulfone Hybrid Donorâ€"Acceptor Molecule. Chemistry of Materials, 2015, 27, 7050-7057.	3.2	239
125	Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles. Organic Letters, 2015, 17, 4412-4415.	2.4	43
126	The effect of meta coupling on colour purity, quantum yield, and exciton utilizing efficiency in deep-blue emitters from phenanthroimidazole isomers. Physical Chemistry Chemical Physics, 2015, 17, 31894-31901.	1.3	15

#	Article	IF	Citations
127	2,5â€Difluorenylâ€Substituted Siloles for the Fabrication of Highâ€Performance Yellow Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2014, 20, 1931-1939.	1.7	58
128	An Efficient AlEâ€Active Blueâ€Emitting Molecule by Incorporating Multifunctional Groups into Tetraphenylsilane. Chemistry - A European Journal, 2014, 20, 7589-7592.	1.7	41
129	Separation of Electrical and Optical Energy Gaps: Selectively Adjusting the Electrical and Optical Properties for a Highly Efficient Blue Emitter. Chemistry - A European Journal, 2014, 20, 2149-2153.	1.7	36
130	Creation of Bifunctional Materials: Improve Electronâ€Transporting Ability of Light Emitters Based on AlEâ€Active 2,3,4,5â€Tetraphenylsiloles. Advanced Functional Materials, 2014, 24, 3621-3630.	7.8	123
131	Highly efficient deep blue light emitting devices based on triphenylsilane modified phenanthro[9, 10- <i>d</i>]imidazole. Laser and Photonics Reviews, 2014, 8, L6-L10.	4.4	54
132	Threeâ€Component Synthesis of αâ€Aminoâ€Î±â€aryl Carbonitriles from Arynes, Aroyl Cyanides, and <i>N</i> , <i>N</i> ,2014, 2014, 1832-1835.	1.2	23
133	Conjugation versus rotation: good conjugation weakens the aggregation-induced emission effect of siloles. Chemical Communications, 2014, 50, 4500.	2.2	53
134	Recent Advances on the Lewis Acid-Catalyzed Cascade Rearrangements of Propargylic Alcohols and Their Derivatives. ACS Catalysis, 2014, 4, 1911-1925.	5.5	232
135	Dimesitylboryl-functionalized fluorene derivatives: Promising luminophors with good electron-transporting ability for deep blue organic light-emitting diodes. Dyes and Pigments, 2014, 101, 136-141.	2.0	21
136	Impacts of intramolecular B–N coordination on photoluminescence, electronic structure and electroluminescence of tetraphenylethene-based luminogens. Dyes and Pigments, 2014, 101, 247-253.	2.0	15
137	Novel violet emitting material synthesized by stepwise chemical reactions. Journal of Materials Chemistry C, 2014, 2, 5019.	2.7	27
138	Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and a y coordinate <0.05 based on a fully twisting donor–acceptor molecule. Journal of Materials Chemistry C, 2014, 2, 4733-4736.	2.7	123
139	Dimeric phenanthroimidazole for blue electroluminescent materials: the effect of substituted position attached to biphenyl center. Physical Chemistry Chemical Physics, 2014, 16, 10837-10843.	1.3	54
140	Aggregation-induced emission, mechanochromism and blue electroluminescence of carbazole and triphenylamine-substituted ethenes. Journal of Materials Chemistry C, 2014, 2, 4320-4327.	2.7	102
141	Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole: remarkable substitution effects on the excited state properties and device performance. Physical Chemistry Chemical Physics, 2014, 16, 20772-20779.	1.3	65
142	Recent advances in transition-metal-catalyzed C–CN bond activations. RSC Advances, 2014, 4, 47806-47826.	1.7	72
143	Synthesis, Structure, Photoluminescence, and Electroluminescence of Siloles that Contain Planar Fluorescent Chromophores. Chemistry - an Asian Journal, 2014, 9, 2937-2945.	1.7	23
144	Microwave-assisted FeCl3-mediated rapid synthesis of poly(9,9-dihexylfluorene) with high molecular weight. Polymer, 2014, 55, 5346-5349.	1.8	5

#	Article	IF	CITATIONS
145	High-efficiency deep blue fluorescent emitters based on phenanthro[9,10-d]imidazole substituted carbazole and their applications in organic light emitting diodes. Organic Electronics, 2014, 15, 2667-2676.	1.4	94
146	Solutionâ€Processable Hosts Constructed by Carbazole/PO Substituted Tetraphenylsilanes for Efficient Blue Electrophosphorescent Devices. Advanced Functional Materials, 2014, 24, 5881-5888.	7.8	45
147	Stereoselective synthesis of folded luminogens with arene–arene stacking interactions and aggregation-enhanced emission. Chemical Communications, 2014, 50, 1131-1133.	2.2	62
148	A Hybridized Local and Chargeâ€Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Advanced Optical Materials, 2014, 2, 892-901.	3.6	357
149	Piezochromic luminescent and electroluminescent materials comprised of tetraphenylethene plus spirobifluorene or 9,9-diphenylfluorene. Dyes and Pigments, 2014, 106, 87-93.	2.0	35
150	Ultrasound-assisted Suzuki coupling reaction for rapid synthesis of polydihexylfluorene. Polymer, 2014, 55, 3083-3086.	1.8	10
151	Aggregationâ€Induced Emission and Efficient Solidâ€State Fluorescence from Tetraphenyletheneâ€Based N,Câ€Chelate Fourâ€Coordinate Organoborons. Chemistry - A European Journal, 2013, 19, 11512-11517.	1.7	90
152	Deep blue fluorescent 2,5-bis(phenylsilyl)-substituted 3,4-diphenylsiloles: Synthesis, structure and aggregation-induced emission. Dyes and Pigments, 2013, 99, 520-525.	2.0	33
153	Thermal and optoelectronic properties of anthracene and dibenz[a,c]anthracene. Chemical Research in Chinese Universities, 2013, 29, 110-115.	1.3	1
154	Microwave assisted synthesis of fluorene-based copolymers with different conjugate degreed quinoxaline segments from reactive polymer. Thin Solid Films, 2013, 545, 188-193.	0.8	3
155	Highly π-extended polymers based on phenanthro-pyrazine: Synthesis, characterization, theoretical calculation and photovoltaic properties. Polymer, 2013, 54, 6191-6199.	1.8	7
156	Palladiumâ€Catalyzed Cyclocarbonylation of 2â€Halobenzaldehyde and Hydrazines: A Facile Synthesis of 2â€Aminoisoindolinâ€1â€ones. Chinese Journal of Chemistry, 2013, 31, 182-186.	2.6	6
157	9,11,12,14â€Tetraaryldibenzo[<i>f</i> , <i>h</i>]imidazo[1,2â€ <i>b</i>]isoquinolines and Their Emission Responses to Solvent Polarity, Acidity, and Nitroarenes. European Journal of Organic Chemistry, 2013, 2013, 7320-7327.	1.2	3
158	From tetraphenylethene to tetranaphthylethene: structural evolution in AIE luminogen continues. Chemical Communications, 2013, 49, 2491.	2.2	123
159	Aggregation-enhanced emission and efficient electroluminescence of tetraphenylethene-cored luminogens. Chemical Communications, 2013, 49, 594-596.	2.2	82
160	Fluorescent chemosensors based on 9-cycloheptatrienylidene fluorenes (9-CHFs). New Journal of Chemistry, 2013, 37, 1645.	1.4	16
161	Twisted D–π–A solid emitters: efficient emission and high contrast mechanochromism. Chemical Communications, 2013, 49, 4009.	2.2	239
162	Microwaveâ€assisted suzuki coupling reaction for rapid synthesis of conjugated polymer–poly(9,9â€dihexylfluorene)s as an example. Journal of Polymer Science Part A, 2013, 51, 1950-1955.	2.5	18

#	Article	IF	CITATIONS
163	Effects of Substitution with Donor–Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. Journal of Physical Chemistry C, 2013, 117, 7334-7347.	1.5	385
164	Synergy between Twisted Conformation and Effective Intermolecular Interactions: Strategy for Efficient Mechanochromic Luminogens with High Contrast. Advanced Materials, 2013, 25, 2837-2843.	11.1	422
165	Copperâ€Mediated Cyanation of Aryl Halides by Activation of Benzyl Cyanide as the Cyanide Source. European Journal of Organic Chemistry, 2013, 2013, 4032-4036.	1.2	56
166	A triphenylamine-capped solution-processable wholly aromatic organic molecule with electrochemical stability and its potential application in photovoltaic devices. New Journal of Chemistry, 2013, 37, 2440.	1.4	23
167	Similar or Totally Different: The Control of Conjugation Degree through Minor Structural Modifications, and Deepâ€Blue Aggregationâ€Induced Emission Luminogens for Nonâ€Doped OLEDs. Advanced Functional Materials, 2013, 23, 2329-2337.	7.8	270
168	Synthesis and Characterization of an Imidazoleâ€Containing Pyrene Ï€â€System. European Journal of Organic Chemistry, 2013, 2013, 7267-7271.	1.2	12
169	Highâ€Efficiency Violetâ€Lightâ€Emitting Materials Based on Phenanthro[9,10â€ <i>d</i>]imidazole. Chemistry - A European Journal, 2013, 19, 2602-2605.	1.7	111
170	Novel tetraarylsilan-centred compounds as single host for white organic light-emitting diodes with high efficiency and low roll-off. Journal Physics D: Applied Physics, 2013, 46, 265101.	1.3	4
171	Efficient Electroluminescence from Excimers of 1,3,6,8â€Tetrakis(3,5â€dimethylphenyl)pyrene. Chemistry - an Asian Journal, 2013, 8, 444-449.	1.7	17
172	Timeâ€resolved spectroscopy study of donor–acceptorâ€type copolymers in a monodisperse system: The effect of ratio between the acceptor and the donor. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 992-997.	2.4	4
173	Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100, 203304.	1.5	36
174	An amine-reactive tetraphenylethylene derivative for protein detection in SDS-PAGE. Analyst, The, 2012, 137, 5592.	1.7	24
175	Fumaronitrile-Based Fluorogen: Red to Near-Infrared Fluorescence, Aggregation-Induced Emission, Solvatochromism, and Twisted Intramolecular Charge Transfer. Journal of Physical Chemistry C, 2012, 116, 10541-10547.	1.5	147
176	Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. Journal of Materials Chemistry, 2012, 22, 4527.	6.7	103
177	High efficiency luminescent liquid crystal: aggregation-induced emission strategy and biaxially oriented mesomorphic structure. Journal of Materials Chemistry, 2012, 22, 3323.	6.7	112
178	Palladium-catalyzed cyanide metathesis: utilization of benzyl cyanide as an operator-benign reagent for aryl halide cyanations. RSC Advances, 2012, 2, 6167.	1.7	64
179	Bipolar AIE-active luminogens comprised of an oxadiazole core and terminal TPE moieties as a new type of host for doped electroluminescence. Chemical Communications, 2012, 48, 9586.	2.2	80
180	A Facile Approach to Highly Efficient and Thermally Stable Solidâ€State Emitters: Knitting up AlEâ€Active TPE Luminogens by Aryl Linkers. ChemPlusChem, 2012, 77, 949-958.	1.3	18

#	Article	IF	CITATIONS
181	Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. Chemical Science, 2012, 3, 549-558.	3.7	114
182	Separation of electrical and optical energy gaps for constructing bipolar organic wide bandgap materials. Chemical Communications, 2012, 48, 3015.	2.2	54
183	Carbazole/oligocarbazoles substituted silanes as wide bandgap host materials for solution-processable electrophosphorescent devices. Organic Electronics, 2012, 13, 2825-2831.	1.4	22
184	Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application. Chemistry of Materials, 2012, 24, 1518-1528.	3.2	472
185	Naphthalene-substituted 2,3,4,5-tetraphenylsiloles: synthesis, structure, aggregation-induced emission and efficient electroluminescence. Journal of Materials Chemistry, 2012, 22, 20266.	6.7	24
186	Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. Journal of Materials Chemistry, 2012, 22, 7387.	6.7	154
187	Siloleâ€containing poly(silylenevinylene)s: Synthesis, characterization, aggregationâ€enhanced emission, and explosive detection. Journal of Polymer Science Part A, 2012, 50, 2265-2274.	2.5	33
188	The thriving chemistry of ketenimines. Chemical Society Reviews, 2012, 41, 5687.	18.7	232
189	Palladiumâ€Catalyzed Reaction of Arylamine and Diarylacetylene: Solventâ€Controlled Construction of 2,3â€Diarylindoles and Pentaarylpyrroles. European Journal of Organic Chemistry, 2012, 2012, 4380-4386.	1.2	42
190	What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chemical Science, 2012, 3, 2737.	3.7	338
191	A Highly Efficient, Blueâ€Phosphorescent Device Based on a Wideâ€Bandgap Host/FIrpic: Rational Design of the Carbazole and Phosphine Oxide Moieties on Tetraphenylsilane. Advanced Functional Materials, 2012, 22, 2830-2836.	7.8	107
192	A Facile and Versatile Approach to Efficient Luminescent Materials for Applications in Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2012, 7, 484-488.	1.7	65
193	From A Fluorescent Chromophore in Solution to An Efficient Emitter in the Solid State. Chemistry - an Asian Journal, 2012, 7, 2424-2428.	1.7	13
194	Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles. Journal of Materials Chemistry, 2012, 22, 10472.	6.7	62
195	Exploration of structure and mechanism of insoluble gels formed in microwave-assisted Suzuki coupling for poly(9,9-dihexylfluorene)s. Science China Chemistry, 2012, 55, 844-849.	4.2	7
196	Synthesis and characterization of new polyfluorene derivatives: using phenanthro[9,10-d]imidazole group as a building block for deep blue light-emitting polymer. Polymer Bulletin, 2012, 69, 273-289.	1.7	13
197	Palladiumâ€Catalyzed Selective Synthesis of Naphthalenes and Indenones and Their Luminescent Properties. European Journal of Organic Chemistry, 2012, 2012, 824-830.	1.2	19
198	Efficient Light Emitters in the Solid State: Synthesis, Aggregationâ€Induced Emission, Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores and Multiple Triarylvinyl Peripherals. Advanced Functional Materials, 2012, 22, 378-389.	7.8	198

#	Article	IF	CITATIONS
199	Regioselective Alkyne Polyhydrosilylation: Synthesis and Photonic Properties of Poly(silylenevinylene)s. Macromolecules, 2011, 44, 5977-5986.	2.2	52
200	Phenanthro[9,10-d]imidazole as a new building block for blue light emitting materials. Journal of Materials Chemistry, 2011, 21, 5451.	6.7	229
201	Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 10949.	6.7	67
202	Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chemical Communications, 2011, 47, 11216.	2.2	136
203	Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chemical Communications, 2011, 47, 8847.	2.2	175
204	Pyrene-substituted ethenes: aggregation-enhanced excimer emission and highly efficient electroluminescence. Journal of Materials Chemistry, 2011, 21, 7210.	6.7	206
205	Tuning the Electronic Nature of Aggregation-Induced Emission Luminogens with Enhanced Hole-Transporting Property. Chemistry of Materials, 2011, 23, 2536-2544.	3.2	184
206	1,3,6,8-Tetrakis[(triisopropylsilyl)ethynyl]pyrene: A highly efficient solid-state emitter for non-doped yellow electroluminescence devices. Organic Electronics, 2011, 12, 2236-2242.	1.4	18
207	Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. Journal of Materials Chemistry, 2011, 21, 4056.	6.7	275
208	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.	3.7	216
209	A solution-processable deep red molecular emitter for non-doped organic red-light-emitting diodes. Dyes and Pigments, 2011, 91, 356-363.	2.0	44
210	Functionality of peripheral side chain for enhanced performance of conjugated polymerâ€"F8BT as an example. Journal of Polymer Science Part A, 2011, 49, 4549-4555.	2.5	16
211	Covalent Immobilization of Aggregationâ€Induced Emission Luminogens in Silica Nanoparticles Through Click Reaction. Small, 2011, 7, 1448-1455.	5.2	59
212	Peripheral Cyanohexyl Substituent in Wide Bandgap Polymer: Increase the Electron Injection Property for Blue Phosphorescence Light Emitting Device. Macromolecular Rapid Communications, 2011, 32, 1467-1471.	2.0	11
213	Controllable Optical, Electrical, and Morphologic Properties of 3,4â€Ethylenedioxythiophene Based Electrocopolymerization Films. Macromolecular Rapid Communications, 2011, 32, 1014-1019.	2.0	12
214	Fabrication of Silica Nanoparticles with Both Efficient Fluorescence and Strong Magnetization and Exploration of Their Biological Applications. Advanced Functional Materials, 2011, 21, 1733-1740.	7.8	122
215	Stereoselective Synthesis, Efficient Light Emission, and High Bipolar Charge Mobility of Chiasmatic Luminogens. Advanced Materials, 2011, 23, 5430-5435.	11.1	105
216	Synthesis, Structure, Aggregationâ€Induced Emission, Selfâ€Assembly, and Electron Mobility of 2,5â€Bis(triphenylsilylethynyl)â€3,4â€diphenylsiloles. Chemistry - A European Journal, 2011, 17, 5998-6008.	1.7	62

#	Article	IF	CITATIONS
217	Bi-layer non-doped small-molecular white organic light-emitting diodes with high colour stability. Journal Physics D: Applied Physics, 2011, 44, 145101.	1.3	11
218	Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules, 2010, 43, 4921-4936.	2.2	216
219	Theoretical study of substituent effect on the charge mobility of 2,5-bis(trialkylsilylethynyl)-1,1,3,4-tetraphenylsiloles. Science China Chemistry, 2010, 53, 2311-2317.	4.2	8
220	Changing the Behavior of Chromophores from Aggregation aused Quenching to Aggregationâ€Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced Materials, 2010, 22, 2159-2163.	11.1	834
221	Copperâ€Catalyzed Threeâ€Component Synthesis of 2â€Iminodihydrocoumarins and 2â€Iminocoumarins. Advanced Synthesis and Catalysis, 2010, 352, 1139-1144.	2.1	54
222	Copperâ€Catalyzed Fourâ€Component Reaction of Baylis–Hillman Adducts with Alkynes, Sulfonyl Azides and Alcohols. Advanced Synthesis and Catalysis, 2010, 352, 2432-2436.	2.1	23
223	Fabrication of Fluorescent Silica Nanoparticles Hybridized with AIE Luminogens and Exploration of Their Applications as Nanobiosensors in Intracellular Imaging. Chemistry - A European Journal, 2010, 16, 4266-4272.	1.7	124
224	Aggregationâ€Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 2010, 31, 834-839.	2.0	93
225	Iridium complex grafted to 3,6â€carbazoleâ€ <i>altâ€</i> tetraphenylsilane copolymers for blue electrophosphorescence. Journal of Polymer Science Part A, 2010, 48, 1859-1865.	2.5	37
226	Luminescent tetraphenylethene-substituted silanes. Pure and Applied Chemistry, 2010, 82, 863-870.	0.9	19
227	Aggregation-Induced Emission Enhancement of Aryl-Substituted Pyrrole Derivatives. Journal of Physical Chemistry B, 2010, 114, 16731-16736.	1.2	139
228	Electron Transfer and Aggregate Formation Coinduced Emission Enhancement of 9-Cycloheptatrienylidene Fluorenes in the Presence of Cupric Chloride. Journal of Physical Chemistry C, 2010, 114, 18702-18711.	1.5	9
229	Aggregation-induced emission, self-assembly, and electroluminescence of 4,4 \hat{a} €²-bis(1,2,2-triphenylvinyl)biphenyl. Chemical Communications, 2010, 46, 686-688.	2.2	313
230	Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. Journal of Physical Chemistry C, 2010, 114, 6090-6099.	1.5	765
231	Steric Hindrance, Electronic Communication, and Energy Transfer in the Photo- and Electroluminescence Processes of Aggregation-Induced Emission Luminogens. Journal of Physical Chemistry C, 2010, 114, 7963-7972.	1.5	109
232	A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polymer Chemistry, 2010, 1, 426-429.	1.9	288
233	Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chemical Communications, 2010, 46, 2221.	2.2	352
234	Copperâ€Catalyzed Oneâ€Pot Synthesis of 2â€Alkylideneâ€1,2,3,4―tetrahydropyrimidines. Advanced Synthesis Catalysis, 2009, 351, 1768-1772.	and 2.1	69

#	Article	IF	Citations
235	Dual Tuning of Emission Color and Electron Injection Properties Through inâ€situ Chemical Reaction in a Conjugated Polymer Containing 9,10â€Phenanthrenequinone. Macromolecular Chemistry and Physics, 2009, 210, 2029-2036.	1.1	9
236	Structural Modulation of Solidâ€6tate Emission of 2,5â€Bis(trialkylsilylethynyl)â€3,4â€diphenylsiloles. Angewandte Chemie - International Edition, 2009, 48, 7608-7611.	7.2	205
237	Synthesis and properties of poly(1-phenyl-1-octyne)s containing stereogenic and chromophoric pendant groups. Science in China Series B: Chemistry, 2009, 52, 1691-1702.	0.8	4
238	A wide band gap polymer derived from 3,6â€carbazole and tetraphenylsilane as host for green and blue phosphorescent complexes. Journal of Polymer Science Part A, 2009, 47, 4784-4792.	2.5	33
239	Nucleic Acid-Induced Aggregation and Pyrene Excimer Formation. Organic Letters, 2009, 11, 4302-4305.	2.4	68
240	Solution-Processable Stiff Dendrimers: Synthesis, Photophysics, Film Morphology, and Electroluminescence. Journal of Organic Chemistry, 2009, 74, 383-395.	1.7	72
241	Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Journal of Materials Chemistry, 2009, 19, 6143.	6.7	58
242	Photophysical properties of fluoreneâ€based copolymers synthesized by connecting twisted biphenyl units with fluorene via <i>para</i> â€and <i>meta</i> âflinkages. Polymer International, 2008, 57, 987-994.	1.6	7
243	New ladderâ€type conjugated polymer containing carbazole and fluorene units in backbone: Synthesis, optical, and electrochemistry properties. Journal of Polymer Science Part A, 2008, 46, 3120-3127.	2.5	13
244	A solutionâ€processible poly(<i>p</i> â€phenylene vinylene) without alkyl substitution: Introducing the <i>cis</i> â€vinylene segments in polymer chain for improved solubility, blue emission, and high efficiency. Journal of Polymer Science Part A, 2008, 46, 5242-5250.	2.5	35
245	Fluorene trimers with various 9.98^{2} -substituents: The synthesis, characteristics, condensed state structures, and electroluminescence properties. Organic Electronics, 2008, 9, 241-252.	1.4	30
246	Switchable 2,3-dithienylmaleimide bonded to different fluorophores: synthesis and photochromic properties. Journal of Zhejiang University: Science A, 2008, 9, 1590-1594.	1.3	2
247	Zigzag Molecules from Pyrene-Modified Carbazole Oligomers:  Synthesis, Characterization, and Application in OLEDs. Journal of Organic Chemistry, 2008, 73, 594-602.	1.7	87
248	White Light from Excimer and Electromer in Single-Emitting-Component Electroluminescent Diodes. Journal of Physical Chemistry C, 2008, 112, 8511-8515.	1.5	51
249	Mechanistic Aspects of Monomer, Polymer Formation, and Synthesis of PQ-Alt-Dialkyl-fluorene Conjugated Copolymer. Chemical Research in Chinese Universities, 2008, 24, 110-115.	1.3	0
250	Optical and electron-deficient properties of poly [2,7-(9,9-dihexylfluorene)-Co-Bi-pyridine]: A combined experimental and theoretical study. Synthetic Metals, 2008, 158, 194-199.	2.1	3
251	Fluorescent Conjugated Dendrimers with Fluorinated Terminal Groups: Nanofiber Formation and Electroluminescence Properties. Organic Letters, 2008, 10, 3041-3044.	2.4	40
252	Role of Tetrakis(triphenylphosphine)palladium(0) in the Degradation and Optical Properties of Fluorene-Based Compounds. Journal of Physical Chemistry C, 2008, 112, 10273-10278.	1.5	16

#	Article	IF	CITATIONS
253	Synthesis and Electrochemical Properties of Peripheral Carbazole Functional Ter(9,9-spirobifluorene)s. Journal of Organic Chemistry, 2008, 73, 4212-4218.	1.7	33
254	The Counter Anionic Size Effects on Electrochemical, Morphological, and Luminescence Properties of Electrochemically Deposited Luminescent Films. Journal of the Electrochemical Society, 2008, 155, H287.	1.3	27
255	High efficiency deep-blue organic light-emitting diode with a blue dye in low-polarity host. Applied Physics Letters, 2008, 92, .	1.5	27
256	Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes. Semiconductor Science and Technology, 2007, 22, 855-858.	1.0	23
257	Role of Nonemissive Quenchers for the Green Emission in Polyfluorene. Journal of Physical Chemistry B, 2007, 111, 10639-10644.	1.2	11
258	Poly (meta-phenylene) Derivative with Rigid Twisted Biphenyl Units in Backbone: Synthesis, Structural Characterization, Photophysical Properties and Electroluminescence. Chemical Research in Chinese Universities, 2007, 23, 720-725.	1.3	1
259	Thermal Cycloaddition Facilitated by Orthogonal π–π Organization through Conformational Transfer in a Swivel-Cruciform Oligo(phenylenevinylene). Angewandte Chemie - International Edition, 2007, 46, 3245-3248.	7.2	18
260	A Waterâ€Soluble π onjugated Polymer with up to 100 mg · mL ^{â^'1} Solubility. Macron Rapid Communications, 2007, 28, 1645-1650.	nolecular 2.0	37
261	Novel, yellow-emitting anthracene/fluorene oligomers: synthesis and characterization. Tetrahedron, 2007, 63, 7809-7815.	1.0	21
262	Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinone― <i>alt</i> å€dialkylfluorene conjugated copolymer. Polymer International, 2007, 56, 1507-1513.	1.6	23
263	Electrochemically Deposited Organic Luminescent Films:Â The Effects of Deposition Parameters on Morphologies and Luminescent Efficiency of Films. Journal of Physical Chemistry B, 2006, 110, 17784-17789.	1.2	55
264	Nature of Zinc(II)-Induced Ionochromic Effect of Bipyridine-Containing Conjugated Polymers:  An Electrostatic Interaction Mechanism. Journal of Physical Chemistry B, 2006, 110, 16846-16851.	1.2	11
265	Photodegradation of Polyfluorene and Fluorene Oligomers with Alkyl and Aromatic Disubstitutions. Journal of Physical Chemistry B, 2006, 110, 13734-13740.	1.2	56
266	Efficient nondoped white organic light-emitting diodes based on electromers. Applied Physics Letters, 2006, 89, 123503.	1.5	30
267	Synthesis and characterization of light-emitting materials composed of carbazole, pyrene and fluorene. Synthetic Metals, 2006, 156, 209-214.	2.1	30
268	Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes. Chemical Communications, 2006, , 3393.	2.2	60
269	Efficient blue electroluminescent device using tetra (\hat{l}^2 -naphthyl) silane as a hole-blocking material. Applied Physics Letters, 2005, 87, 222115.	1.5	17
270	Dibenzosuberenylidene-Ended Fluorophores: Â Rapid and Efficient Synthesis, Characterization, and Aggregation-Induced Emissions. Journal of Physical Chemistry B, 2005, 109, 19627-19633.	1.2	100

#	Article	IF	CITATIONS
271	Study on the Formation of the Ketonic Defects in the Thermal Degradation of Ladder-Type Poly(p-phenylenes) by Vibrational Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 23366-23370.	1.2	35
272	Zinc(II)-Induced Color-Tunable Fluorescence Emission in the π-Conjugated Polymers Composed of the Bipyridine Unit: A Way to Get White-Light Emission. Journal of Physical Chemistry B, 2005, 109, 6944-6947.	1.2	33
273	Highly efficient red phosphorescent light-emitting diodes based on ruthenium(II)-complex-doped semiconductive polymers. Applied Physics Letters, 2004, 84, 290-292.	1.5	55
274	Fluorescence quenching effect of metal ions for $\hat{l}\pm,\hat{l}\pm\hat{a}\in^2$ -diamine containing conjugated polymers in solid films. Science Bulletin, 2004, 49, 246-248.	1.7	0
275	Synthesis and Photophysical Properties of π-Conjugated Polymers Incorporated with Phosphorescent Rhenium(I) Chromophores in the Backbones. Journal of Physical Chemistry B, 2004, 108, 13185-13190.	1.2	42
276	Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers. Macromolecules, 2004, 37, 3451-3458.	2.2	90
277	A Wide-Bandgap Semiconducting Polymer for Ultraviolet and Blue Light Emitting Diodes. Macromolecular Chemistry and Physics, 2003, 204, 2274-2280.	1.1	37
278	New Ladder-Type Poly(p-phenylene)s Containing Fluorene Unit Exhibiting High Efficient Electroluminescence. Macromolecules, 2003, 36, 9823-9829.	2.2	68
279	Metal lonochromic Effects of Conjugated Polymers:Â Effects of the Rigidity of Molecular Recognition Sites on Metal Ion Sensing. Journal of Physical Chemistry B, 2003, 107, 6535-6538.	1.2	60
280	Ru catalyzed cyclodimerization of bis(2â€thienyl)acetylene and bis(3â€thienyl)acetylene. Synthesis properties of 4,5,6â€tris(2â€thienyl)benzo(<i>b</i> bbthiophene and 5,6,7â€tris(3â€thienyl)benzo[<i>b</i> bthiophene. Journal of Heterocyclic Chemistry, 2002, 39, 91-92.	1.4	12
281	A oneâ€pot synthesis of 2â€arylâ€2,3â€dihydroâ€4(l <i>H</i>)â€quinazolinones by use of samarium iodide. Journ of Heterocyclic Chemistry, 2002, 39, 1271-1272.	al 1.4	58
282	Title is missing!. Journal of Materials Chemistry, 2001, 11, 2971-2973.	6.7	13
283	FACILE SYNTHESIS OF 2-SUBSTITUTED-QUINAZOLIN-4-(3H)-ONES PROMOTED BY Sml2. Synthetic Communications, 2001, 31, 323-327.	1.1	9
284	Water Accelerated Sm/TMSCl Reductive System: Debromination of <i>VIC </i> eac "Dibromides and Reduction of Sodium Alkyl Thiosulfates. Synthetic Communications, 2000, 30, 1917-1925.	1.1	10
285	Highly Efficient Asymmetric Multiple Resonance Thermally Activated Delayed Fluorescence Emitter with EQE of 32.8% and Extremely Low Efficiency Rollâ€Off. Angewandte Chemie, 0, , .	1.6	15