
Atsushi Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent discharge or edema after endoscopic sinus surgery in patients with chronic rhinosinusitis is associated with a type 1 or 3 endotype. International Forum of Allergy and Rhinology, 2023, 13, 15-24.	1.5	3
2	Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 812-826.	2.7	90
3	Prognostic factors for polyp recurrence in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 150, 352-361.e7.	1.5	39
4	Strong and consistent associations of precedent chronic rhinosinusitis with risk of non–cystic fibrosis bronchiectasis. Journal of Allergy and Clinical Immunology, 2022, 150, 701-708.e4.	1.5	5
5	Mechanisms and pathogenesis of chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2022, 149, 1491-1503.	1.5	76
6	Use of intraoperative frontal sinus mometasoneâ€eluting stents decreased interleukin 5 and interleukin 13 in patients with chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2022, 12, 1330-1339.	1.5	4
7	CRSâ€PRO and SNOTâ€22 correlations with type 2 inflammatory mediators in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2022, 12, 1377-1386.	1.5	10
8	Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2022, 149, 1666-1674.	1.5	28
9	Efficacy of an oral CRTH2 antagonist (AZD1981) in the treatment of chronic rhinosinusitis with nasal polyps in adults: A randomized controlled clinical trial. Clinical and Experimental Allergy, 2022, 52, 859-867.	1.4	9
10	Il-4 Receptor Alpha Chain Q576R Genotype and Aspirin Exacerbated Respiratory Disease. , 2022, , .		0
11	Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2021, 147, 600-612.	1.5	43
12	Group 2 innate lymphoid cells in nasal polyposis. Annals of Allergy, Asthma and Immunology, 2021, 126, 110-117.	0.5	19
13	Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. Journal of Allergy and Clinical Immunology, 2021, 147, 1306-1317.	1.5	63
14	Legends of allergy and immunology: Robert P. Schleimer. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3230-3232.	2.7	0
15	Studies of the role of basophils in aspirin-exacerbated respiratory disease pathogenesis. Journal of Allergy and Clinical Immunology, 2021, 148, 439-449.e5.	1.5	20
16	Prevalence of Bronchiectasis in Patients with Chronic Rhinosinusitis in a Tertiary Care Center. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3188-3195.e2.	2.0	12
17	Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Medicine, 2021, 13, 157.	3.6	21
18	TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2020, 145, 437-440.e8.	1.5	6

#	Article	IF	CITATIONS
19	Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps. Mucosal Immunology, 2020, 13, 86-95.	2.7	25
20	Use of endotypes, phenotypes, and inflammatory markers to guide treatment decisions in chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2020, 124, 318-325.	0.5	79
21	Selective Activation of the 15-Lipoxgyenase Pathway in Aspirin Exacerbated Respiratory Disease. , 2020, ,		1
22	Integrin β6 microparticles in nasal lavage fluids; potential new biomarkers for basal cell activation in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3261-3264.	2.7	6
23	Associations Between Inflammatory Endotypes and Clinical Presentations in Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2812-2820.e3.	2.0	221
24	Increased thrombin-activatable fibrinolysis inhibitor levels in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2019, 144, 1566-1574.e6.	1.5	20
25	Group 2 Innate Lymphoid Cells in Airway Diseases. Chest, 2019, 156, 141-149.	0.4	108
26	Shortâ€chain fatty acids induce tissue plasminogen activator in airway epithelial cells via <scp>GPR</scp> 41&43. Clinical and Experimental Allergy, 2018, 48, 544-554.	1.4	32
27	The activation and function of IL-36 ^{ĵ3} in neutrophilic inflammation in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2018, 141, 1646-1658.	1.5	93
28	Role of TNFSF11 and Group 2 Innate Lymphoid Cells in Type 2 Inflammation in Chronic Rhinosinusitis with Nasal Polyps. Journal of Allergy and Clinical Immunology, 2018, 141, AB1.	1.5	2
29	IL-10, TGF-β, and glucocorticoid prevent the production of type 2 cytokines in human group 2 innate lymphoid cells. Journal of Allergy and Clinical Immunology, 2018, 141, 1147-1151.e8.	1.5	40
30	Epithelial activators of type 2 inflammation: Elevation of thymic stromal lymphopoietin, but not <scp>IL</scp> â€25 or <scp>IL</scp> â€33, in chronic rhinosinusitis with nasal polyps in Chicago, Illinois. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2251-2254.	2.7	37
31	Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans. Journal of Allergy and Clinical Immunology, 2017, 139, 1559-1567.e8.	1.5	27
32	Microparticles in nasal lavage fluids in chronic rhinosinusitis: Potential biomarkers for diagnosis of aspirin-exacerbated respiratory disease. Journal of Allergy and Clinical Immunology, 2017, 140, 720-729.	1.5	31
33	Potential Involvement of the Epidermal Growth Factor Receptor Ligand Epiregulin and Matrix Metalloproteinase-1 in Pathogenesis of Chronic Rhinosinusitis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 334-345.	1.4	16
34	Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps. Immunity, Inflammation and Disease, 2017, 5, 233-243.	1.3	105
35	Evidence for altered levels of IgD in the nasal airway mucosa of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1562-1571.e5.	1.5	24
36	Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients. Laryngoscope, 2017, 127, 2210-2218.	1.1	48

#	Article	IF	CITATIONS
37	Chronic airway inflammation provides a unique environment for B cell activation and antibody production. Clinical and Experimental Allergy, 2017, 47, 457-466.	1.4	48
38	Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1966-1978.e9.	1.5	103
39	Classical complement pathway activation in the nasal tissue of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2017, 140, 89-100.e2.	1.5	36
40	A prospective analysis evaluating tissue biopsy location and its clinical relevance in chronic rhinosinusitis with nasal polyps. International Forum of Allergy and Rhinology, 2017, 7, 1058-1064.	1.5	18
41	Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: Possible role of the nongastric H,K-ATPase. Journal of Allergy and Clinical Immunology, 2017, 139, 130-141.e11.	1.5	63
42	Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. Journal of Allergy and Clinical Immunology, 2017, 139, 699-703.e7.	1.5	140
43	Tissue proteases convert CCL23 into potent monocyte chemoattractants in patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2016, 137, 1274-1277.e9.	1.5	9
44	A Recently Established Murine Model of Nasal Polyps Demonstrates Activation of B Cells, as Occurs in Human Nasal Polyps. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 170-175.	1.4	14
45	Role of <i>Aspergillus fumigatus</i> in Triggering Protease-Activated Receptor-2 in Airway Epithelial Cells and Skewing the Cells toward a T-helper 2 Bias. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 60-70.	1.4	32
46	Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. Journal of Allergy and Clinical Immunology, 2015, 136, 737-746.e4.	1.5	114
47	Increased noneosinophilic nasal polyps in chronic rhinosinusitis in US second-generation Asians suggest genetic regulation of eosinophilia. Journal of Allergy and Clinical Immunology, 2015, 135, 576-579.	1.5	94
48	Clinical Characteristics of Adults With Chronic Rhinosinusitis and Specific Antibody Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 236-242.	2.0	35
49	Cross-Talk between Human Mast Cells and Bronchial Epithelial Cells in Plasminogen Activator Inhibitor-1 Production via Transforming Growth Factor-I²1. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 88-95.	1.4	25
50	Immunopathology of chronic rhinosinusitis. Allergology International, 2015, 64, 121-130.	1.4	206
51	Cytokines in Chronic Rhinosinusitis. Role in Eosinophilia and Aspirin-exacerbated Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 682-694.	2.5	224
52	Association of common filaggrin null mutations with atopy but not chronic rhinosinusitis. Annals of Allergy, Asthma and Immunology, 2015, 114, 420-421.	0.5	1
53	Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2015, 136, 1548-1558.e7.	1.5	51
54	Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis. Clinical and Experimental Allergy, 2015, 45, 384-393.	1.4	31

#	Article	IF	CITATIONS
55	A retrospective, crossâ€sectional study reveals that women with CRSwNP have more severe disease than men. Immunity, Inflammation and Disease, 2015, 3, 14-22.	1.3	48
56	Involvement of Toll-Like Receptor 2 and Epidermal Growth Factor Receptor Signaling in Epithelial Expression of Airway Remodeling Factors. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 471-481.	1.4	14
57	Searching for Distinct Mechanisms in Eosinophilic and Noneosinophilic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 596-598.	2.5	3
58	Basophils are elevated in nasal polyps of patients with chronic rhinosinusitis without aspirin sensitivity. Journal of Allergy and Clinical Immunology, 2014, 133, 1759-1763.	1.5	80
59	Post-Translational Modification By Serine Proteases Controls The CCL23 Activity In Nasal Polyps Of Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 2014, 133, AB129.	1.5	1
60	Meta-Analysis Of Gene Expression Microarrays Reveals Novel Biomarkers Consistent With Altered Functionality Of Mucosal Barrier In Patients With Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 2014, 133, AB236.	1.5	2
61	Suppressor of cytokine signaling 3 expression is diminished in sinonasal tissues from patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2014, 133, 275-277.e1.	1.5	11
62	Chronic rhinosinusitis with nasal polyps is characterized by B-cell inflammation and EBV-induced protein 2 expression. Journal of Allergy and Clinical Immunology, 2013, 131, 1075-1083.e7.	1.5	109
63	B-lymphocyte lineage cells and the respiratory system. Journal of Allergy and Clinical Immunology, 2013, 131, 933-957.	1.5	136
64	Incidence and associated premorbid diagnoses of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 131, 1350-1360.	1.5	189
65	Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 132, 593-600.e12.	1.5	210
66	Elevated Presence of Dendritic Cell Subsets in Chronic Rhinosinusitis. Journal of Allergy and Clinical Immunology, 2013, 131, AB60.	1.5	2
67	Regional differences in the expression of innate host defense molecules in sinonasal mucosa. Journal of Allergy and Clinical Immunology, 2013, 132, 1227-1230.e5.	1.5	29
68	Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2013, 132, 584-592.e4.	1.5	104
69	Role of interleukin-32 in chronic rhinosinusitis. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 13-18.	1.1	11
70	Excessive Fibrin Deposition in Nasal Polyps Caused by Fibrinolytic Impairment through Reduction of Tissue Plasminogen Activator Expression. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 49-57.	2.5	138
71	Increased expression of CC chemokine ligand 18 in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2012, 129, 119-127.e9.	1.5	77
72	Age-related differences in the pathogenesis of chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2012, 129, 858-860.e2.	1.5	64

#	Article	IF	CITATIONS
73	Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2012, 130, 410-420.e5.	1.5	120
74	Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. Journal of Allergy and Clinical Immunology, 2012, 130, 225-232.e4.	1.5	101
75	Genetic variation in B cell–activating factor of the TNF family (BAFF) and asthma exacerbations among African American subjects. Journal of Allergy and Clinical Immunology, 2012, 130, 996-999.e6.	1.5	7
76	Differential expression of interleukinâ€32 in chronic rhinosinusitis with and without nasal polyps. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 25-32.	2.7	63
77	Reduced expression of antimicrobial <scp>PLUNC</scp> proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 920-928.	2.7	93
78	Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2011, 128, 73-81.e4.	1.5	87
79	Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2011, 128, 1198-1206.e1.	1.5	169
80	Regulation and Function of the IL-1 Family Cytokine IL-1F9 in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 145-153.	1.4	133
81	Evaluation of the Presence of B-cell attractant Chemokines in Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2010, 24, 11-16.	1.0	77
82	Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2010, 125, 397-403.e10.	1.5	142
83	Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2010, 125, 667-675.	1.5	110
84	Epithelium, Inflammation, and Immunity in the Upper Airways of Humans: Studies in Chronic Rhinosinusitis. Proceedings of the American Thoracic Society, 2009, 6, 288-294.	3.5	95
85	Dexamethasone and FK506 Inhibit Expression of Distinct Subsets of Chemokines in Human Mast Cells. Journal of Immunology, 2009, 182, 7233-7243.	0.4	52
86	Local release of B cell–activating factor of the TNF family after segmental allergen challenge of allergic subjects. Journal of Allergy and Clinical Immunology, 2009, 123, 369-375.e2.	1.5	43
87	Evidence of a role for B cell–activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology, 2008, 121, 1385-1392.e2.	1.5	163
88	Perspectives on the Etiology of Chronic Rhinosinusitis: An Immune Barrier Hypothesis. American Journal of Rhinology & Allergy, 2008, 22, 549-559.	2.3	267
89	TLR3- and Th2 Cytokine-Dependent Production of Thymic Stromal Lymphopoietin in Human Airway Epithelial Cells. Journal of Immunology, 2007, 179, 1080-1087.	0.4	432
90	Epithelium: At the interface of innate andÂadaptive immune responses. Journal of Allergy and Clinical Immunology, 2007, 120, 1279-1284.	1.5	323

#	Article	IF	CITATIONS
91	Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Current Opinion in Immunology, 2007, 19, 711-720.	2.4	295
92	Culture of human mast cells from peripheral blood progenitors. Nature Protocols, 2006, 1, 2178-2183.	5.5	65
93	CpG Oligodeoxynucleotide Prolongs Eosinophil Survival through Activation of Contaminating B Cells and Plasmacytoid Dendritic Cells in vitro. International Archives of Allergy and Immunology, 2006, 140, 42-50.	0.9	9
94	Airway Epithelial Cells Produce B Cell-Activating Factor of TNF Family by an IFN-β-Dependent Mechanism. Journal of Immunology, 2006, 177, 7164-7172.	0.4	142
95	Corticosteroid and Cytokines Synergistically Enhance Toll-Like Receptor 2 Expression in Respiratory Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 463-469.	1.4	141
96	Lipopolysaccharide-Binding Protein Critically Regulates Lipopolysaccharide-Induced IFN-β Signaling Pathway in Human Monocytes. Journal of Immunology, 2004, 172, 6185-6194.	0.4	58
97	CpG oligodeoxynucleotides directly induce CXCR3 chemokines in human B cells. Biochemical and Biophysical Research Communications, 2004, 320, 1139-1147.	1.0	22
98	Interferon-alpha/beta receptor-mediated selective induction of a gene cluster by CpG oligodeoxynucleotide 2006. BMC Immunology, 2003, 4, 8.	0.9	56
99	Eosinophil Degranulation during Pregnancy and after Delivery by Cesarean Section. International Archives of Allergy and Immunology, 2003, 131, 34-39.	0.9	8
100	Application of Genomic Science to Clinical Allergy. Allergy and Clinical Immunology International, 2003, 15, 218-222.	0.3	0