Qing-Feng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985282/publications.pdf Version: 2024-02-01

		236925	223800
122	2,945	25	46
papers	citations	h-index	g-index
125	125	125	3745
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 2019, 5, 461-470.	9.3	467
2	The hornwort genome and early land plant evolution. Nature Plants, 2020, 6, 107-118.	9.3	203
3	A genome for gnetophytes and early evolution of seed plants. Nature Plants, 2018, 4, 82-89.	9.3	151
4	The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany, 2017, 68, 2991-3005.	4.8	111
5	Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nature Plants, 2020, 6, 215-222.	9.3	88
6	Transcriptomic profiling of tall fescue in response to heat stress and improved thermotolerance by melatonin and 24-epibrassinolide. BMC Genomics, 2018, 19, 224.	2.8	78
7	The ethylene response factor Va <scp>ERF</scp> 092 from Amur grape regulates the transcription factor Va <scp>WRKY</scp> 33, improving cold tolerance. Plant Journal, 2019, 99, 988-1002.	5.7	77
8	Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Molecular Biology and Evolution, 2020, 37, 2394-2413.	8.9	75
9	The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. Journal of Experimental Botany, 2018, 69, 1749-1764.	4.8	74
10	The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica, 2018, 146, 101-113.	1.1	54
11	Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. Plant Cell Reports, 2018, 37, 1159-1172.	5.6	54
12	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	12.8	51
13	Health risk assessment by consumption of vegetables irrigated with reclaimed waste water: A case study in Thika (Kenya). Journal of Environmental Management, 2019, 231, 576-581.	7.8	46
14	Overexpression of VaWRKY12, a transcription factor from Vitis amurensis with increased nuclear localization under low temperature, enhances cold tolerance of plants. Plant Molecular Biology, 2019, 100, 95-110.	3.9	45
15	Competition and facilitation among plants for pollination: can pollinator abundance shift the plant–plant interactions?. Plant Ecology, 2014, 215, 3-13.	1.6	44
16	Generic phylogeny and historical biogeography of Alismataceae, inferred from multiple DNA sequences. Molecular Phylogenetics and Evolution, 2012, 63, 407-416.	2.7	40
17	Species richness and phylogenetic diversity of seed plants across vegetation zones of Mount Kenya, East Africa. Ecology and Evolution, 2018, 8, 8930-8939.	1.9	38
18	Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC Plant Biology, 2022, 22, 177.	3.6	37

#	Article	IF	CITATIONS
19	Medicinal Plants and Their Traditional Uses in Local Communities around Cherangani Hills, Western Kenya. Plants, 2020, 9, 331.	3.5	36
20	Identification of a <i>R2R3-MYB</i> gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (<i>Nelumbo</i> Adans.). PeerJ, 2016, 4, e2369.	2.0	34
21	The complete chloroplast genome sequence of an endemic monotypic genus <i>Hagenia</i> (Rosaceae): structural comparative analysis, gene content and microsatellite detection. PeerJ, 2017, 5, e2846.	2.0	33
22	Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental dispersals. Molecular Phylogenetics and Evolution, 2014, 78, 87-95.	2.7	32
23	The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport's rule depend on different lifeâ€forms and phytogeographic affinities. Ecology and Evolution, 2019, 9, 4495-4503.	1.9	32
24	Comparative genomics of 11 complete chloroplast genomes of Senecioneae (Asteraceae) species: DNA barcodes and phylogenetics. , 2019, 60, 17.		29
25	The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Plant Cell Reports, 2020, 39, 621-634.	5.6	28
26	Testing four barcoding markers for species identification of Potamogetonaceae. Journal of Systematics and Evolution, 2011, 49, 246-251.	3.1	26
27	Chloroplast phylogeny of <i>Cucurbita</i> : Evolution of the domesticated and wild species. Journal of Systematics and Evolution, 2013, 51, 326-334.	3.1	26
28	Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Diversity, 2021, 43, 117-124.	3.7	26
29	Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic Environments. Molecular Biology and Evolution, 2022, 39, .	8.9	25
30	Correlations of Life Form, Pollination Mode and Sexual System in Aquatic Angiosperms. PLoS ONE, 2014, 9, e115653.	2.5	24
31	Transcriptome sequencing of three Ranunculus species (Ranunculaceae) reveals candidate genes in adaptation from terrestrial to aquatic habitats. Scientific Reports, 2015, 5, 10098.	3.3	24
32	Germination characters and early seedling growth of wheat (Triticum aestivum L.) genotypes under salt stress conditions. Journal of Crop Science and Biotechnology, 2016, 19, 383-392.	1.5	24
33	Chloroplast DNA Phylogeography Reveals Repeated Range Expansion in a Widespread Aquatic Herb Hippuris vulgaris in the Qinghai-Tibetan Plateau and Adjacent Areas. PLoS ONE, 2013, 8, e60948.	2.5	24
34	Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms. Journal of Systematics and Evolution, 2016, 54, 342-348.	3.1	23
35	Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees. Annals of Botany, 2017, 119, 1053-1059.	2.9	23
36	Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiology and Biochemistry, 2017, 117, 1-11.	5.8	23

#	Article	IF	CITATIONS
37	Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (<i>Populus ilicifolia</i>). Plant Journal, 2020, 103, 430-442.	5.7	23
38	Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrata (Davidiaceae). Conservation Genetics, 2015, 16, 583-593.	1.5	22
39	A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae (Alismatales). Molecular Phylogenetics and Evolution, 2015, 82, 111-117.	2.7	22
40	Phylogeography of an alpine aquatic herb <i>Ranunculus bungei</i> (Ranunculaceae) on the Qinghai–Tibet Plateau. Journal of Systematics and Evolution, 2014, 52, 313-325.	3.1	21
41	Allopatric divergence of Stuckenia filiformis (Potamogetonaceae) on the Qinghai-Tibet Plateau and its comparative phylogeography with S. pectinata in China. Scientific Reports, 2016, 6, 20883.	3.3	20
42	Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis. International Journal of Molecular Sciences, 2018, 19, 319.	4.1	19
43	Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic–terrestrial transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 27-34.	1.2	19
44	RNA directed DNA methylation and seed plant genome evolution. Plant Cell Reports, 2020, 39, 983-996.	5.6	19
45	Vascular flora of Kenya, based on the Flora of Tropical East Africa. PhytoKeys, 2017, , 113-126.	1.0	18
46	Initial Complete Chloroplast Genomes of Alchemilla (Rosaceae): Comparative Analysis and Phylogenetic Relationships. Frontiers in Genetics, 2020, 11, 560368.	2.3	17
47	An Ethnobotanical Survey of a Dryland Botanical Garden and Its Environs in Kenya: The Mutomo Hill Plant Sanctuary. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-22.	1.2	17
48	Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution. BMC Plant Biology, 2022, 22, 88.	3.6	17
49	Plastome Evolution in the Hyperdiverse Genus Euphorbia (Euphorbiaceae) Using Phylogenomic and Comparative Analyses: Large-Scale Expansion and Contraction of the Inverted Repeat Region. Frontiers in Plant Science, 2021, 12, 712064.	3.6	16
50	An annotated checklist of the coastal forests of Kenya, East Africa. PhytoKeys, 2020, 147, 1-191.	1.0	16
51	Genetic diversity and population structure of the endangered basal angiosperm <i>Brasenia schreberi</i> (Cabombaceae) in China. PeerJ, 2018, 6, e5296.	2.0	16
52	Complete Chloroplast Genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): Comparative Genomics and Phylogenomic Placement. Frontiers in Plant Science, 2021, 12, 691833.	3.6	15
53	Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae): Implications for historical biogeography. Molecular Phylogenetics and Evolution, 2020, 152, 106939.	2.7	14
54	Distinct methylome patterns contribute to ecotypic differentiation in the growth of the storage organ of a flowering plant (sacred lotus). Molecular Ecology, 2021, 30, 2831-2845.	3.9	14

#	Article	IF	CITATIONS
55	The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. Nature Plants, 2022, 8, 764-777.	9.3	14
56	Genotypic diversity and genetic structure of populations of the distylous aquatic plant <i>Nymphoides peltata</i> (<scp>M</scp> enyanthaceae) in China. Journal of Systematics and Evolution, 2013, 51, 536-544.	3.1	13
57	Phylogeography of the widespread plant <i>Ailanthus altissima</i> (Simaroubaceae) in China indicated by three chloroplast DNA regions. Journal of Systematics and Evolution, 2014, 52, 175-185.	3.1	13
58	Phenotypic Plasticity in the Structure of Fine Adventitious Metasequoia glyptostroboides Roots Allows Adaptation to Aquatic and Terrestrial Environments. Plants, 2019, 8, 501.	3.5	13
59	Conservation of Wild Food Plants and Their Potential for Combatting Food Insecurity in Kenya as Exemplified by the Drylands of Kitui County. Plants, 2020, 9, 1017.	3.5	13
60	The First Climpse of Streptocarpus ionanthus (Gesneriaceae) Phylogenomics: Analysis of Five Subspecies' Chloroplast Genomes. Plants, 2020, 9, 456.	3.5	13
61	Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). Journal of Ethnopharmacology, 2022, 292, 115102.	4.1	13
62	Floristic composition and endemism pattern of vascular plants in Ethiopia and Eritrea. Journal of Systematics and Evolution, 2020, 58, 33-42.	3.1	12
63	Traditional knowledge, use and conservation of plants by the communities of Tharaka-Nithi County, Kenya. Plant Diversity, 2020, 42, 479-487.	3.7	12
64	Analysis of the Complete Plastomes of 31 Species of Hoya Group: Insights Into Their Comparative Genomics and Phylogenetic Relationships. Frontiers in Plant Science, 2021, 12, 814833.	3.6	12
65	Intergeneric Relationships within the Early-Diverging Angiosperm Family Nymphaeaceae Based on Chloroplast Phylogenomics. International Journal of Molecular Sciences, 2018, 19, 3780.	4.1	11
66	Cryptic diversity within the African aquatic plant Ottelia ulvifolia (Hydrocharitaceae) revealed by population genetic and phylogenetic analyses. Journal of Plant Research, 2020, 133, 373-381.	2.4	11
67	Phylogeographic analysis reveals two cryptic species of the endangered fern Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae) in China. Conservation Genetics, 2011, 12, 1357-1365.	1.5	10
68	Accurate position exchange of stamen and stigma by movement in opposite direction resolves the herkogamy dilemma in a protandrous plant, Ajuga decumbens (Labiatae). AoB PLANTS, 2019, 11, plz052.	2.3	10
69	Eurasian origin of Alismatidae inferred from statistical dispersal–vicariance analysis. Molecular Phylogenetics and Evolution, 2013, 67, 38-42.	2.7	9
70	Pollen limitation, plasticity in floral traits, and mixed mating system in an alpine plant <i>Pedicularis siphonantha</i> (Orobanchaceae) from different altitudes. Journal of Systematics and Evolution, 2017, 55, 192-199.	3.1	9
71	Complete Chloroplast Genome of Rhipsalis baccifera, the only Cactus with Natural Distribution in the Old World: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies. Plants, 2020, 9, 979.	3.5	9
72	Role of Melatonin in Inducing the Physiological and Biochemical Processes Associated with Heat Stress Tolerance in Tall Fescue (Festuca arundinaceous). Journal of Plant Growth Regulation, 2022, 41, 2759-2768.	5.1	9

#	Article	IF	CITATIONS
73	An annotated checklist of vascular plants of Cherangani hills, Western Kenya. PhytoKeys, 2019, 120, 1-90.	1.0	9
74	The effect of pollination on resource allocation among sexual reproduction, clonal reproduction, and vegetative growth in <i>Sagittaria potamogetifolia</i> (Alismataceae). Ecological Research, 2010, 25, 495-499.	1.5	8
75	Resource allocation among sexual, clonal reproduction and vegetative growth of two <i>Potamogeton</i> species and their hybrid: Adaptability of the hybrid in relation to its parents. Journal of Systematics and Evolution, 2013, 51, 461-467.	3.1	8
76	Demographic history and population genetic structure of Hagenia abyssinica (Rosaceae), a tropical tree endemic to the Ethiopian highlands and eastern African mountains. Tree Genetics and Genomes, 2017, 13, 1.	1.6	8
77	Variation in composition of two bumble bee species across communities affects nectar robbing but maintains pollinator visitation rate to an alpine plant, <i>Salvia przewalskii</i> . Ecological Entomology, 2018, 43, 363-370.	2.2	8
78	Conservation priorities and distribution patterns of vascular plant species along environmental gradients in Aberdare ranges forest. PhytoKeys, 2019, 131, 91-113.	1.0	8
79	An annotated checklist of the vascular flora of South and North Nandi Forests, Kenya. PhytoKeys, 2020, 155, 87-139.	1.0	8
80	Nectarless flowers with deep corolla tubes in <i>Pedicularis</i> : does long pistil length provide an arena for male competition?. Botanical Journal of the Linnean Society, 2015, 179, 526-532.	1.6	7
81	Phenotypic plasticity of floral traits and pollination adaption in an alpine plant Pedicularis siphonantha D. Don when transplanted from higher to lower elevation in Eastern Himalaya. Journal of Mountain Science, 2017, 14, 1995-2002.	2.0	7
82	Whole-genome resequencing of Coffea arabica L. (Rubiaceae) genotypes identify SNP and unravels distinct groups showing a strong geographical pattern. BMC Plant Biology, 2022, 22, 69.	3.6	7
83	Relationship of stigma behaviors and breeding system in three <i>Mazus</i> (Phrymaceae) species with bilobed stigma. Journal of Systematics and Evolution, 2015, 53, 259-265.	3.1	6
84	Characterization and Comparative Analysis of the Complete Chloroplast Genome of the Critically Endangered Species <i> Streptocarpus teitensis</i> (Gesneriaceae). BioMed Research International, 2018, 2018, 1-11.	1.9	6
85	Impatiens bullatisepala (Balsaminaceae), a new species from Guizhou, China . Phytotaxa, 2021, 500, 217-224.	0.3	6
86	Complete genus-level plastid phylogenomics of Alismataceae with revisited historical biogeography. Molecular Phylogenetics and Evolution, 2022, 166, 107334.	2.7	6
87	RNA-seq of Ranunculus sceleratus and Identification of Orthologous Genes among Four Ranunculus Species. Frontiers in Plant Science, 2016, 7, 732.	3.6	5
88	Population Genetics of Calotropis gigantea, a Medicinal and Fiber Resource Plant, as Inferred from Microsatellite Marker Variation in two Native Countries. Biochemical Genetics, 2019, 57, 522-539.	1.7	5
89	Systematics of Lobelioideae (Campanulaceae): review, phylogenetic and biogeographic analyses. PhytoKeys, 2021, 174, 13-45.	1.0	5
90	Euphorbia mbuinzauensis, a new succulent species in Kenya from the Synadenium group in Euphorbia sect. Monadenium (Euphorbiaceae). PhytoKeys, 2021, 183, 21-35.	1.0	5

#	Article	IF	CITATIONS
91	Genome size, chromosome number determination, and analysis of the repetitive elements in Cissus quadrangularis. PeerJ, 2019, 7, e8201.	2.0	5
92	An annotated checklist of the vascular plants of Aberdare Ranges Forest, a part of Eastern Afromontane Biodiversity Hotspot. PhytoKeys, 2020, 149, 1-88.	1.0	5
93	Characterization of Flavonoids and Transcripts Involved in Their Biosynthesis in Different Organs of Cissus rotundifolia Lam. Metabolites, 2021, 11, 741.	2.9	5
94	Plastome phylogenomics and historical biogeography of aquatic plant genus Hydrocharis (Hydrocharitaceae). BMC Plant Biology, 2022, 22, 106.	3.6	5
95	Microsatellite primers for the endangered aquatic herb, Ottelia acuminata (Hydrocharitaceae). American Journal of Botany, 2012, 99, e262-e264.	1.7	4
96	Development and Characterization of EST-SSR Markers for Ottelia acuminata var. jingxiensis (Hydrocharitaceae). Applications in Plant Sciences, 2017, 5, 1700083.	2.1	4
97	Description of a New Species and Lectotypification of Two Names in Impatiens Sect. Racemosae (Balsaminaceae) from China. Plants, 2021, 10, 1812.	3.5	4
98	Comparative Genomics, Phylogenetics, Biogeography, and Effects of Climate Change on Toddalia asiatica (L.) Lam. (Rutaceae) from Africa and Asia. Plants, 2022, 11, 231.	3.5	3
99	Annotated checklist of the vascular plants of Mount Kenya, East Africa. Phytotaxa, 2022, 546, 1-108.	0.3	3
100	The complete plastome of real yellow wood (Podocarpus latifolius): gene organization and comparison with related species. Holzforschung, 2019, 73, 525-536.	1.9	2
101	Co-flowering neighbor alters pollinator composition and influences reproductive success in a plant pollinated by multiple insects. Plant Ecology, 2020, 221, 219-228.	1.6	2
102	Altitudinal variation of leaf carbon isotope for Dendrosenecio keniensis and Lobelia gregoriana in Mount Kenya alpine zone. Biotropica, 2021, 53, 1394-1405.	1.6	2
103	Aspidistra longhuiensis (Asparagaceae), a new speices from Hunan, China. Phytotaxa, 2021, 510, .	0.3	2
104	Literary runaway: Increasingly more references cited per academic research article from 1980 to 2019. PLoS ONE, 2021, 16, e0255849.	2.5	2
105	Plastid phylogenomics and insights into the inter-mountain dispersal of the Eastern African giant senecios (Dendrosenecio, Asteraceae). Molecular Phylogenetics and Evolution, 2021, 164, 107271.	2.7	2
106	Ottelia fengshanensis, a new bisexual species of Ottelia (Hydrocharitaceae) from southwestern China. PhytoKeys, 2019, 135, 1-10.	1.0	2
107	Distribution pattern and habitat preference for Lobelia species (Campanulaceae) in five countries of East Africa. PhytoKeys, 2020, 159, 45-60.	1.0	2
108	<p>Zehneria monocarpa (Cucurbitaceae), a new species from the relicts of Kenya's coastal forests</p> . Phytotaxa, 2020, 443, 258-264.	0.3	2

#	Article	IF	CITATIONS
109	Didymocarpus longicalyx (Gesneriaceae), a new species from southwestern Yunnan, China . Phytotaxa, 2020, 475, 59-66.	0.3	2
110	Zehneria grandibracteata (Cucurbitaceae), an overlooked new species from western Kenyan forests. PhytoKeys, 2020, 165, 85-98.	1.0	2
111	Lysionotus coccinus (Gesneriaceae), a new species from southwestern Yunnan, China. Nordic Journal of Botany, 2020, 38, .	0.5	1
112	Morphological and genomic evidence for a new species of Corallorhiza (Orchidaceae Epidendroideae) from SW China. Plant Diversity, 2021, 43, 409-419.	3.7	1
113	Dracaena neobella nom. nov., a replacement name for D. bella (L.E.Newton) Byng & Christenh. (Asparagaceae). Phytotaxa, 2021, 514, 85-87.	0.3	1
114	<p>Peponium elgonense (Cucurbitaceae), a new species from Mount Elgon in Kenya</p> . Phytotaxa, 2020, 443, 189-197.	0.3	1
115	<i>Ponerorchis wolongensis</i> (Orchidaceae, Orchidinae), a new species with variable labellum from the Hengduan Mountains, western Sichuan, China. Nordic Journal of Botany, 2022, 2022, .	0.5	1
116	Candidate genes for adaptation to an aquatic habitat recovered from Ranunculus bungei and Ranunculus sceleratus. Biochemical Systematics and Ecology, 2017, 71, 16-25.	1.3	0
117	Impacts of the Asian interior arid zone on phylogeographic patterns in the eastern Asian flora revealed by two Potamogeton species (Potamogetonaceae): east-west divergence within species and barriers to north-south dispersal. Botanical Journal of the Linnean Society, 2018, , .	1.6	0
118	Multiple Pleistocene refugia and recent diversification forStreptocarpus ionanthus(Gesneriaceae) complex: Insights from multiple molecular sources. Journal of Systematics and Evolution, 2020, , .	3.1	0
119	Reinstatement of the independent specific status of Oldenlandia violacea (Rubiaceae) from the synonymy of O. monanthos. Phytotaxa, 2021, 507, .	0.3	0
120	A new combination in Zehneria (Cucurbitaceae). Phytotaxa, 2021, 521, 123-126.	0.3	0
121	Genotypic diversity and genetic structure of populations of the distylous aquatic plantNymphoides peltata(Menyanthaceae) in China. Journal of Systematics and Evolution, 2013, , n/a-n/a.	3.1	0
122	Ottelia songmingensis, a new rank and combination of Hydrocharitaceae from China. Phytotaxa, 2022, 554, 101-102.	0.3	0