Wenxuan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1985201/publications.pdf Version: 2024-02-01

WENYLIAN LIANC

#	Article	IF	CITATIONS
1	High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue. Nature Biomedical Engineering, 2022, 6, 569-583.	22.5	28
2	MesoSCAPE - Highspeed Functional Volumetric Imaging of Multi-millimeter Biological Sample with Cellular Resolution. , 2022, , .		1
3	Miniaturized MediSCAPE microscopy for label-free, real-time volumetric histological imaging at the point of care. , 2022, , .		0
4	Multicolor fiber-optic two-photon endomicroscopy for brain imaging. Optics Letters, 2021, 46, 1093.	3.3	13
5	Twist-free ultralight two-photon fiberscope enabling neuroimaging on freely rotating/walking mice. Optica, 2021, 8, 870.	9.3	25
6	Throughput-Speed Product Augmentation for Scanning Fiber-Optic Two-Photon Endomicroscopy. IEEE Transactions on Medical Imaging, 2020, 39, 3779-3787.	8.9	17
7	Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. Journal of Biomedical Optics, 2020, 25, 1.	2.6	19
8	Robust, accurate depth-resolved attenuation characterization in optical coherence tomography. Biomedical Optics Express, 2020, 11, 672.	2.9	9
9	A biopsyâ€needle compatible varifocal multiphoton rigid probe for depthâ€resolved optical biopsy. Journal of Biophotonics, 2019, 12, e201800229.	2.3	20
10	Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nature Methods, 2019, 16, 1054-1062.	19.0	222
11	Superâ€achromatic optical coherence tomography capsule for ultrahighâ€resolution imaging of esophagus. Journal of Biophotonics, 2019, 12, e201800205.	2.3	24
12	Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
13	Signal-to-noise ratio analysis and improvement for fluorescence tomography imaging. Review of Scientific Instruments, 2018, 89, 093114.	1.3	4
14	High-speed, ultrahigh-resolution distal scanning OCT endoscopy at 800 nm for in vivo imaging of colon tumorigenesis on murine models. Biomedical Optics Express, 2018, 9, 3731.	2.9	27
15	Spectro-temporal dispersion management of femtosecond pulses for fiber-optic two-photon endomicroscopy. Optics Express, 2018, 26, 22877.	3.4	11
16	Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection. Scientific Reports, 2017, 7, 44909.	3.3	64
17	Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light: Science and Applications, 2017, 6, e17082-e17082.	16.6	100
18	Focus scanning with feedback-control for fiber-optic nonlinear endomicroscopy. Biomedical Optics Express, 2017, 8, 2519.	2.9	16

WENXUAN LIANG

#	Article	IF	CITATIONS
19	Fitting-free algorithm for efficient quantification of collagen fiber alignment in SHG imaging applications. Biomedical Optics Express, 2017, 8, 4609.	2.9	6
20	Automatic and robust segmentation of endoscopic OCT images and optical staining. Biomedical Optics Express, 2017, 8, 2697.	2.9	21
21	Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source. Optics Letters, 2017, 42, 3193.	3.3	34
22	Optimal operational conditions for supercontinuum-based ultrahigh-resolution endoscopic OCT imaging. Optics Letters, 2016, 41, 250.	3.3	57
23	Real-time Fluorescence Lifetime Imaging by a Fiber-optic Two-photon Endomicroscopy System. , 2016, , .		1
24	In vivo Airway Imaging with High-speed Ultrahigh-resolution Endoscopic OCT. , 2016, , .		0
25	Scanning fiber-optic nonlinear endomicroscopy for in vivo histology. , 2015, , .		Ο
26	Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images. Optics Letters, 2014, 39, 4392.	3.3	5
27	Diffractive catheter for ultrahigh-resolution spectral-domain volumetric OCT imaging. Optics Letters, 2014, 39, 2016.	3.3	52
28	MEMS-based 3D confocal scanning microendoscope using MEMS scanners for both lateral and axial scan. Sensors and Actuators A: Physical, 2014, 215, 89-95.	4.1	55
29	Nonlinear Endomicroscopy Imaging Technology for Translational Applications. , 2014, , 281-303.		Ο
30	An electrothermal/electrostatic dual driven MEMS scanner with large in-plane and out-of-plane displacement. , 2013, , .		3
31	Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy. Journal of Biomedical Optics, 2012, 17, 021108.	2.6	45
32	Nonlinear optical fiber endomicroscopy towards clinical applications. , 2012, , .		0
33	Gold nanocages as contrast agents for two-photon luminescence endomicroscopy imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1267-1270.	3.3	16
34	Optimized implementation of the FDK algorithm on one digital signal processor. Tsinghua Science and Technology, 2010, 15, 108-113.	6.1	6