Peter M Pryciak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984454/publications.pdf

Version: 2024-02-01

29 papers 2,340 citations

361045 20 h-index 28 g-index

32 all docs 32 docs citations

times ranked

32

1770 citing authors

#	Article	IF	CITATIONS
1	Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell, 1992, 69, 769-780.	13.5	288
2	Membrane recruitment of the kinase cascade scaffold protein Ste5 by the $G\hat{l}^2\hat{l}^3$ complex underlies activation of the yeast pheromone response pathway. Genes and Development, 1998, 12, 2684-2697.	2.7	230
3	The Role of Far1p in Linking the Heterotrimeric G Protein to Polarity Establishment Proteins During Yeast Mating., 1998, 282, 1511-1516.		215
4	A Mechanism for Cell-Cycle Regulation of MAP Kinase Signaling in a Yeast Differentiation Pathway. Cell, 2007, 128, 519-531.	13.5	206
5	Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature, 1989, 337, 364-368.	13.7	182
6	The design, synthesis, and crystallization of an alpha-helical peptide. Proteins: Structure, Function and Bioinformatics, 1986 , 1 , $16-22$.	1.5	137
7	Cdc42 Regulation of Kinase Activity and Signaling by the Yeast p21-Activated Kinase Ste20. Molecular and Cellular Biology, 2002, 22, 2939-2951.	1.1	109
8	Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Current Biology, 2001, 11, 1815-1824.	1.8	106
9	Membrane Localization of Scaffold Proteins Promotes Graded Signaling in the Yeast MAP Kinase Cascade. Current Biology, 2008, 18, 1184-1191.	1.8	101
10	A Membrane Binding Domain in the Ste5 Scaffold Synergizes with $G\hat{l}^2\hat{l}^3$ Binding to Control Localization and Signaling in Pheromone Response. Molecular Cell, 2005, 20, 21-32.	4. 5	97
11	Simian virus 40 minichromosomes as targets for retroviral integration in vivo Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9237-9241.	3.3	76
12	Role of Cdc42p in Pheromone-Stimulated Signal Transduction in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2000, 20, 7559-7571.	1.1	75
13	<i>AKR1</i> Encodes a Candidate Effector of the Gl^2l^3 Complex in the <i>Saccharomyces cerevisiae</i> Pheromone Response Pathway and Contributes to Control of both Cell Shape and Signal Transduction. Molecular and Cellular Biology, 1996, 16, 2614-2626.	1.1	64
14	Identification of Novel Membrane-binding Domains in Multiple Yeast Cdc42 Effectors. Molecular Biology of the Cell, 2007, 18, 4945-4956.	0.9	57
15	Cyclin-Specific Docking Motifs Promote Phosphorylation of Yeast Signaling Proteins by G1/S Cdk Complexes. Current Biology, 2011, 21, 1615-1623.	1.8	56
16	Dual Role for Membrane Localization in Yeast MAP Kinase Cascade Activation and Its Contribution to Signaling Fidelity. Current Biology, 2006, 16, 618-623.	1.8	48
17	Interaction with the SH3 Domain Protein Bem1 Regulates Signaling by the Saccharomyces cerevisiae p21-Activated Kinase Ste20. Molecular and Cellular Biology, 2005, 25, 2177-2190.	1.1	44
18	Designing New Cellular Signaling Pathways. Chemistry and Biology, 2009, 16, 249-254.	6.2	40

#	Article	IF	CITATIONS
19	CDK and MAPK Synergistically Regulate Signaling Dynamics via a Shared Multi-site Phosphorylation Region on the Scaffold Protein Ste5. Molecular Cell, 2018, 69, 938-952.e6.	4.5	39
20	A Docking Interface in the Cyclin Cln2 Promotes Multi-site Phosphorylation of Substrates and Timely Cell-Cycle Entry. Current Biology, 2015, 25, 316-325.	1.8	31
21	Distinct Roles for Two Gα–Gβ Interfaces in Cell Polarity Control by a Yeast Heterotrimeric G Protein. Molecular Biology of the Cell, 2008, 19, 181-197.	0.9	30
22	Regulation of Cyclin-Substrate Docking by a G1 Arrest Signaling Pathway and the Cdk Inhibitor Far1. Current Biology, 2014, 24, 1390-1396.	1.8	23
23	Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency InÂVivo. Current Biology, 2020, 30, 4454-4466.e5.	1.8	21
24	Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1. Molecular Biology of the Cell, 2018, 29, 669-682.	0.9	13
25	MAP Kinases Bite Back. Developmental Cell, 2001, 1, 449-451.	3.1	11
26	Customized Signaling Circuits. Science, 2008, 319, 1489-1490.	6.0	11
27	Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones. Molecular Biology of the Cell, 2013, 24, 3675-3688.	0.9	9
28	Retroviral Integration Machinery as a Probe for DNA Structure and Associated Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 533-541.	2.0	9
29	MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Molecular Biology of the Cell, 2019, 30, 1037-1049.	0.9	8