Jean Daunizeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1984449/publications.pdf

Version: 2024-02-01

122

all docs

110 13,908 52 papers citations h-index

122

docs citations

h-index g-index

122 9628
times ranked citing authors

46799

89

#	Article	IF	CITATIONS
1	The Bayesian Brain: An Evolutionary Approach to Cognition. , 2022, , 202-221.		O
2	An Overcomplete Approach to Fitting Drift-Diffusion Decision Models to Trial-By-Trial Data. Frontiers in Artificial Intelligence, 2021, 4, 531316.	3.4	5
3	Bridging across functional models: The OFC as a value-making neural network Behavioral Neuroscience, 2021, 135, 277-290.	1.2	10
4	Trading mental effort for confidence in the metacognitive control of value-based decision-making. ELife, 2021, 10, .	6.0	28
5	Dissecting functional contributions of the social brain to strategic behavior. Neuron, 2021, 109, 3323-3337.e5.	8.1	20
6	Choosing what we like vs liking what we choose: How choice-induced preference change might actually be instrumental to decision-making. PLoS ONE, 2020, 15, e0231081.	2.5	29
7	Social behavioural adaptation in Autism. PLoS Computational Biology, 2020, 16, e1007700.	3.2	15
8	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	1.8	32
9	Dynamic causal modelling of COVID-19. Wellcome Open Research, 2020, 5, 89.	1.8	41
10	Second waves, social distancing, and the spread of COVID-19 across America. Wellcome Open Research, 2020, 5, 103.	1.8	40
11	Effective immunity and second waves: a dynamic causal modelling study. Wellcome Open Research, 2020, 5, 204.	1.8	6
12	Effective immunity and second waves: a dynamic causal modelling study. Wellcome Open Research, 2020, 5, 204.	1.8	7
13	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		O
14	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		0
15	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		O
16	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		0
17	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		O
18	Social behavioural adaptation in Autism. , 2020, 16, e1007700.		O

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0231081.		O
20	Title is missing!. , 2020, 15, e0231081.		0
21	Title is missing!. , 2020, 15, e0231081.		0
22	Title is missing!. , 2020, 15, e0231081.		0
23	Title is missing!. , 2020, 15, e0231081.		0
24	Title is missing!. , 2020, 15, e0231081.		0
25	Title is missing!. , 2020, 15, e0231081.		0
26	Title is missing!. , 2020, 15, e0231081.		0
27	Title is missing!. , 2020, 15, e0231081.		0
28	Title is missing!. , 2020, 15, e0231081.		0
29	Assessing inter-individual differences with task-related functional neuroimaging. Nature Human Behaviour, 2019, 3, 897-905.	12.0	62
30	Sour grapes and sweet victories: How actions shape preferences. PLoS Computational Biology, 2019, 15, e1006499.	3.2	14
31	Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain, 2018, 141, 629-650.	7.6	127
32	A plea for "variational neuroethology― Physics of Life Reviews, 2018, 24, 56-58.	2.8	3
33	Computational neuroimaging strategies for single patient predictions. NeuroImage, 2017, 145, 180-199.	4.2	144
34	Does the way we read others' mind change over the lifespan? Insights from a massive web poll of cognitive skills from childhood to late adulthood. Cortex, 2017, 86, 205-215.	2.4	27
35	Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species. PLoS Computational Biology, 2017, 13, e1005833.	3.2	45
36	Learning about and from others' prudence, impatience or laziness: The computational bases of attitude alignment. PLoS Computational Biology, 2017, 13, e1005422.	3.2	15

#	Article	IF	CITATIONS
37	Choose, rate or squeeze: Comparison of economic value functions elicited by different behavioral tasks. PLoS Computational Biology, 2017, 13, e1005848.	3.2	18
38	Computational Dissection of Dopamine Motor and Motivational Functions in Humans. Journal of Neuroscience, 2016, 36, 6623-6633.	3.6	109
39	Dynamic causal modelling of brain–behaviour relationships. Neurolmage, 2015, 117, 202-221.	4.2	28
40	Automatic integration of confidence in the brain valuation signal. Nature Neuroscience, 2015, 18, 1159-1167.	14.8	223
41	Theory of Mind: Did Evolution Fool Us?. PLoS ONE, 2014, 9, e87619.	2.5	59
42	Uncertainty in perception and the Hierarchical Gaussian Filter. Frontiers in Human Neuroscience, 2014, 8, 825.	2.0	286
43	Spatial Attention, Precision, and Bayesian Inference: A Study of Saccadic Response Speed. Cerebral Cortex, 2014, 24, 1436-1450.	2.9	151
44	Inferring on the Intentions of Others by Hierarchical Bayesian Learning. PLoS Computational Biology, 2014, 10, e1003810.	3.2	134
45	The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?. PLoS Computational Biology, 2014, 10, e1003992.	3.2	58
46	VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLoS Computational Biology, 2014, 10, e1003441.	3.2	278
47	Toward a New Application of Real-Time Electrophysiology: Online Optimization of Cognitive Neurosciences Hypothesis Testing. Brain Sciences, 2014, 4, 49-72.	2.3	14
48	Bayesian model selection for group studies â€" Revisited. Neurolmage, 2014, 84, 971-985.	4.2	490
49	Model selection and gobbledygook: Response to Lohmann et al Neurolmage, 2013, 75, 275-278.	4.2	25
50	Variational Bayesian mixed-effects inference for classification studies. NeuroImage, 2013, 76, 345-361.	4.2	30
51	Is non-recognition of choreic movements in Huntington disease always pathological?. Neuropsychologia, 2013, 51, 748-759.	1.6	13
52	Modelling Trial-by-Trial Changes in the Mismatch Negativity. PLoS Computational Biology, 2013, 9, e1002911.	3.2	137
53	A Neurocomputational Model of the Mismatch Negativity. PLoS Computational Biology, 2013, 9, e1003288.	3.2	96
54	Neurocomputational account of how the human brain decides when to have a break. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2641-2646.	7.1	80

#	Article	IF	CITATIONS
55	Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort. PLoS Biology, 2012, 10, e1001266.	5 . 6	255
56	Your Goal Is Mine: Unraveling Mimetic Desires in the Human Brain. Journal of Neuroscience, 2012, 32, 7146-7157.	3.6	33
57	Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?. NeuroImage, 2012, 62, 464-481.	4.2	98
58	An electrophysiological validation of stochastic DCM for fMRI. Frontiers in Computational Neuroscience, 2012, 6, 103.	2.1	20
59	Learning and Generalization under Ambiguity: An fMRI Study. PLoS Computational Biology, 2012, 8, e1002346.	3.2	17
60	Generalised filtering and stochastic DCM for fMRI. NeuroImage, 2011, 58, 442-457.	4.2	177
61	Network discovery with DCM. NeuroImage, 2011, 56, 1202-1221.	4.2	248
62	Effective connectivity: Influence, causality and biophysical modeling. NeuroImage, 2011, 58, 339-361.	4.2	361
63	Dynamic causal modelling: A critical review of the biophysical and statistical foundations. Neurolmage, 2011, 58, 312-322.	4.2	266
64	A Bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 2011, 5, 39.	2.0	460
65	Concepts of Connectivity and Human Epileptic Activity. Frontiers in Systems Neuroscience, 2011, 5, 12.	2.5	56
66	Dynamic causal modeling of spontaneous fluctuations in skin conductance. Psychophysiology, 2011, 48, 252-257.	2.4	44
67	EEG and MEG Data Analysis in SPM8. Computational Intelligence and Neuroscience, 2011, 2011, 1-32.	1.7	500
68	Optimizing Experimental Design for Comparing Models of Brain Function. PLoS Computational Biology, 2011, 7, e1002280.	3.2	40
69	Action and behavior: a free-energy formulation. Biological Cybernetics, 2010, 102, 227-260.	1.3	686
70	The combination of EEG Source Imaging and EEGâ€correlated functional MRI to map epileptic networks. Epilepsia, 2010, 51, 491-505.	5.1	75
71	Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making. PLoS ONE, 2010, 5, e15554.	2.5	130
72	Generalised Filtering. Mathematical Problems in Engineering, 2010, 2010, 1-34.	1.1	113

#	Article	IF	Citations
73	Striatal Prediction Error Modulates Cortical Coupling. Journal of Neuroscience, 2010, 30, 3210-3219.	3.6	294
74	Comparing Families of Dynamic Causal Models. PLoS Computational Biology, 2010, 6, e1000709.	3.2	606
75	EEG-fMRI INTEGRATION: A CRITICAL REVIEW OF BIOPHYSICAL MODELING AND DATA ANALYSIS APPROACHES. Journal of Integrative Neuroscience, 2010, 09, 453-476.	1.7	104
76	Dynamic causal modelling of anticipatory skin conductance responses. Biological Psychology, 2010, 85, 163-170.	2,2	79
77	Bayesian multi-modal model comparison: A case study on the generators of the spike and the wave in generalized spike–wave complexes. Neurolmage, 2010, 49, 656-667.	4.2	13
78	Ten simple rules for dynamic causal modeling. NeuroImage, 2010, 49, 3099-3109.	4.2	712
79	Observing the Observer (II): Deciding When to Decide. PLoS ONE, 2010, 5, e15555.	2.5	43
80	Reinforcement Learning or Active Inference?. PLoS ONE, 2009, 4, e6421.	2.5	281
81	Perception and hierarchical dynamics. Frontiers in Neuroinformatics, 2009, 3, 20.	2.5	85
82	Recognizing Sequences of Sequences. PLoS Computational Biology, 2009, 5, e1000464.	3.2	105
83	Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D: Nonlinear Phenomena, 2009, 238, 2089-2118.	2.8	165
84	EEG–fMRI Information Fusion: Biophysics and Data Analysis. , 2009, , 511-526.		14
85	Population dynamics under the Laplace assumption. NeuroImage, 2009, 44, 701-714.	4.2	76
86	Bayesian model selection for group studies. NeuroImage, 2009, 46, 1004-1017.	4.2	1,253
87	Dynamic causal modelling of distributed electromagnetic responses. Neurolmage, 2009, 47, 590-601.	4.2	95
88	Integrated Bayesian models of learning and decision making for saccadic eye movements. Neural Networks, 2008, 21, 1247-1260.	5.9	31
89	Subliminal Instrumental Conditioning Demonstrated in the Human Brain. Neuron, 2008, 59, 561-567.	8.1	281
90	Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes. NeuroImage, 2008, 39, 755-774.	4.2	89

#	Article	IF	Citations
91	Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG. Neurolmage, 2008, 39, 728-741.	4.2	94
92	Multiple sparse priors for the M/EEG inverse problem. NeuroImage, 2008, 39, 1104-1120.	4.2	548
93	Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neurolmage, 2008, 40, 515-528.	4.2	175
94	Diffusion-based spatial priors for functional magnetic resonance images. NeuroImage, 2008, 41, 408-423.	4.2	41
95	DEM: A variational treatment of dynamic systems. Neurolmage, 2008, 41, 849-885.	4.2	266
96	Population dynamics: Variance and the sigmoid activation function. Neurolmage, 2008, 42, 147-157.	4.2	130
97	Nonlinear dynamic causal models for fMRI. Neurolmage, 2008, 42, 649-662.	4.2	374
98	A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 2008, 4, e1000209.	3.2	557
99	Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography. International Journal of Biomedical Imaging, 2008, 2008, 1-12.	3.9	91
100	Symmetrical event-related EEC/fMRI information fusion in a variational Bayesian framework. NeuroImage, 2007, 36, 69-87.	4.2	189
101	A neural mass model of spectral responses in electrophysiology. Neurolmage, 2007, 37, 706-720.	4.2	185
102	A mesostate-space model for EEG and MEG. NeuroImage, 2007, 38, 67-81.	4.2	34
103	Bayesian inversion for induced responses. , 2007, , 377-390.		0
104	Evaluation of EEG localization methods using realistic simulations of interictal spikes. NeuroImage, 2006, 29, 734-753.	4.2	211
105	Bayesian Spatio-Temporal Approach for EEG Source Reconstruction: Conciliating ECD and Distributed Models. IEEE Transactions on Biomedical Engineering, 2006, 53, 503-516.	4.2	63
106	Conditional correlation as a measure of mediated interactivity in fMRI and MEG/EEG. IEEE Transactions on Signal Processing, 2005, 53, 3503-3516.	5. 3	32
107	Assessing the relevance of fMRI-based prior in the EEG inverse problem: a bayesian model comparison approach. IEEE Transactions on Signal Processing, 2005, 53, 3461-3472.	5.3	50
108	Localization Estimation Algorithm (LEA): A Supervised Prior-Based Approach for Solving the EEG/MEG Inverse Problem. Lecture Notes in Computer Science, 2003, 18, 536-547.	1.3	9

#	Article	lF	CITATIONS
109	Testing and tracking in the UK: A dynamic causal modelling study. Wellcome Open Research, 0, 5, 144.	1.8	12
110	Estimating required †lockdown†to cycles before immunity to SARS-CoV-2: model-based analyses of susceptible population sizes, †SO†to seven European countries, including the UK and Ireland. Wellcome Open Research, 0, 5, 85.	1.8	9