Heather A Meylemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1983973/publications.pdf

Version: 2024-02-01

20 papers

1,516 citations

394421 19 h-index 752698 20 g-index

20 all docs

20 docs citations

times ranked

20

1658 citing authors

#	Article	IF	Citations
1	The role of butanol in the development of sustainable fuel technologies. Journal of Chemical Technology and Biotechnology, 2011, 86, 2-9.	3.2	246
2	Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel, 2012, 97, 560-568.	6.4	149
3	Renewable thermosetting resins and thermoplastics from vanillin. Green Chemistry, 2015, 17, 1249-1258.	9.0	122
4	Solventâ€Free Conversion of Linalool to Methylcyclopentadiene Dimers: A Route To Renewable Highâ€Density Fuels. ChemSusChem, 2011, 4, 465-469.	6.8	110
5	1-Hexene: a renewable C6 platform for full-performance jet and diesel fuels. Green Chemistry, 2014, 16, 770-776.	9.0	96
6	Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium. Laboratory Investigation, 2004, 84, 562-572.	3.7	95
7	Effects of <i>>o</i> -Methoxy Groups on the Properties and Thermal Stability of Renewable High-Temperature Cyanate Ester Resins. Macromolecules, 2015, 48, 3173-3179.	4.8	88
8	Low-Temperature Properties of Renewable High-Density Fuel Blends. Energy &	5.1	85
9	Synthesis, Characterization, and Cure Chemistry of Renewable Bis(cyanate) Esters Derived from 2-Methoxy-4-Methylphenol. Biomacromolecules, 2013, 14, 771-780.	5.4	84
10	Synthesis of Renewable Bisphenols from Creosol. ChemSusChem, 2012, 5, 206-210.	6.8	80
11	High Tg thermosetting resins from resveratrol. Polymer Chemistry, 2013, 4, 3859.	3.9	64
12	Synthesis and characterization of a renewable cyanate ester/polycarbonate network derived from eugenol. Polymer, 2014, 55, 5073-5079.	3.8	53
13	High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering. Physical Chemistry Chemical Physics, 2014, 16, 9448-9457.	2.8	51
14	Ligand Structure, Conformational Dynamics, and Excited-State Electron Delocalization for Control of Photoinduced Electron Transfer Rates in Synthetic Donor-Bridge-Acceptor Systems. Inorganic Chemistry, 2008, 47, 4060-4076.	4.0	39
15	Controlling Electron Transfer through the Manipulation of Structure and Ligand-Based Torsional Motions: A Computational Exploration of Ruthenium Donorâ''Acceptor Systems using Density Functional Theory. Inorganic Chemistry, 2009, 48, 11161-11175.	4.0	35
16	Exploiting Conformational Dynamics To Facilitate Formation and Trapping of Electron-Transfer Photoproducts in Metal Complexes. Journal of the American Chemical Society, 2010, 132, 11464-11466.	13.7	32
17	Nicotine Activates Nuclear Factor of Activated T Cells c2 (NFATc2) and Prevents Cell Cycle Entry in T Cells. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 758-769.	2.5	31
18	Low-temperature, solvent-free dehydration of cineoles with heterogeneous acid catalysts for the production of high-density biofuels. Journal of Chemical Technology and Biotechnology, 2014, 89, 957-962.	3.2	28

#	Article	IF	CITATIONS
19	Synthesis of renewable plasticizer alcohols by formal anti-Markovnikov hydration of terminal branched chain alkenes via a borane-free oxidation/reduction sequence. Green Chemistry, 2012, 14, 2450.	9.0	20
20	A Soluble, Halogen-Free Oxalate from Methyl Salicylate for Chemiluminescence Demonstrations. Journal of Chemical Education, 2013, 90, 1253-1254.	2.3	8