John R Morris

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1983668/publications.pdf
Version: 2024-02-01

$\left.\begin{array}{clccc}\text { In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal } \\ \text { Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 599-602. }\end{array}\right)$ 6.6 169

Uptake of a Chemical Warfare Agent Simulant (DMMP) on TiO₂: Reactive Adsorption and
Active Site Poisoning. Langmuir, 2009, 25, 3652-3658.
$1.6 \quad 91$

9 Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O ₃,
$9 \mathrm{NO}<\mathrm{sub}\rangle 3</$ sub $>$, and OH , on organic surfaces. Chemical Society Reviews, 2016, 45, 3731-3746.

The dynamics of gas-surface energy exchange in collisions of Ar atoms with $̈ \%$ o-functionalized
$10 \quad \begin{aligned} & \text { The dynamics of gas-surface energy exchange in collisions of Ar atoms with l\%o-f } \\ & \text { self-assembled monolayers. Journal of Chemical Physics, 2003, 119, 8084-8096. }\end{aligned}$
1.284

> 11 Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles. Journal of
> Physical Chemistry C, 2007, 111, 3233-3240.

Molecular Beam Scattering from Supercooled Sulfuric Acid:Â Collisions of $\mathrm{HCl}, \mathrm{HBr}$, and HNO 3 with 70
12 wt D2SO4. Journal of Physical Chemistry A, 2000, 104, 6738-6751.
1.1

72

13 Nanoconfinement and mass transport in metalâ€"organic frameworks. Chemical Society Reviews, 2021,
$50,11530-11558$.
Nanoconfinement and mass transport in metalâ€"organic frameworks. Chemical Society Reviews, 2021,
$50,11530-11558$.
18.7

67

Infrared Spectra and Binding Energies of Chemical Warfare Nerve Agent Simulants on the Surface of Amorphous Silica. Journal of Physical Chemistry C, 2013, 117, 15685-15697.
1.5

66
15 Energy transfer in rare gas collisions with hydroxyl- and methyl-terminated self-assembled
1.2

60
monolayers. Journal of Chemical Physics, 2002, 116, 9147-9150.

Benzene, Toluene, and Xylene Transport through UiO-66: Diffusion Rates, Energetics, and the Role of Hydrogen Bonding. Journal of Physical Chemistry C, 2018, 122, 16060-16069.
1.5

60
19
20
Evenâ^'Odd Orientation and Chain-Length Effects in the Energy Exchange of Argon Collisions with Self-Assembled Monolayers. Journal of Physical Chemistry B, 2003, 107, 7120-7125.
1.2

56

Packing density and structure effects on energy-transfer dynamics in argon collisions with organic
1.2
monolayers. Journal of Chemical Physics, 2005, 122, 234714.
55
21 Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of
1.5

Adsorbed CO. Journal of Physical Chemistry C, 2018, 122, 14582-14589.

Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks:
TiO ₂ and Auâ€"TiO₂. Journal of Physical Chemistry C, 2013, 117, 15035-15049.
1.5

49
Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO 2 aerogels. Applied
Catalysis B: Environmental, 2019, 252, 205-213.
$10.8 \quad 47$

Reactions of CC-Terminated Self-Assembled Monolayers with Gas-Phase Ozone. Langmuir, 2005, 21,
2660-2661.
1.6

46
Metalâ€"Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of
Chemical Warfare Agents. ACS Applied Materials \& Interfaces, 2020, 12, 14641-14661.

Chemical Dynamics Study of Intrasurface Hydrogen-Bonding Effects in Gasâ^Surface Energy Exchange
and Accommodation. Journal of Physical Chemistry C, 2008, 112, 476-490.
Classical trajectory study of collisions of Ar with alkanethiolate self-assembled monolayers:
Potential-energy surface effects on dynamics. Journal of Chemical Physics, 2005, 122,214712.
$\begin{array}{ll}\text { Theoretical Study of the Effect of Surface Density on the Dynamics of Ar + Alkanethiolate } & 1.1 \\ 28 & 41\end{array}$

29	Interactions and Binding Energies of Dimethyl Methylphosphonate and Dimethyl Chlorophosphate with Amorphous Silica. Langmuir, 2012, 28, 10962-10967.	1.6	38
30	Oxidation of C <sub> $60</$ sub> Aerosols by Atmospherically Relevant Levels of $\mathrm{O}<$ sub> $3</$ sub>. Environmental Science \& Technology, 2014, 48, 2706-2714.	4.6	38
31	Chemical Warfare Agent Surface Adsorption: Hydrogen Bonding of Sarin and Soman to Amorphous Silica. Journal of Physical Chemistry Letters, 2014, 5, 1393-1399.	2.1	36
32	Adsorption of Substituted Benzene Derivatives on Silica: Effects of Electron Withdrawing and Donating Groups. Journal of Physical Chemistry C, 2016, 120, 13024-13031.	1.5	34
33	Molecular-Level Insight into CO <sub > 2 </sub > Adsorption on the Zirconium-Based Metalâ€"Organic Framework, UiO-66: A Combined Spectroscopic and Computational Approach. Journal of Physical Chemistry C, 2019, 123, 13731-13738.	1.5	34
34	Reaction and desorption of HCl and HBr following collisions with supercooled sulfuric acid. Geophysical Research Letters, 2001, 28, 1961-1964.	1.5	33
35	Collisions of Polar and Nonpolar Gases with Hydrogen Bonding and Hydrocarbon Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 17272-17280.	1.5	32
36	Adsorption of 2-Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gasấ "Surface Interface. Journal of Physical Chemistry C, 2015, 119, 365-372.	1.5	32

Effect of Methanol on the Lewis Acidity of Rutile $\mathrm{TiO}\langle s u b\rangle 2</$ sub> Nanoparticles Probed through
Vibrational Spectroscopy of Coadsorbed CO. Langmuir, 2010, 26, 8106-8112.

43	Dynamics of HCl Collisions with Hydroxyl- and Methyl-Terminated Self-Assembled Monolayersâ€. Journal of Physical Chemistry A, 2006, 110, 1645-1649.
44	Gasâ€"surface energy exchange and thermal accommodation of CO2 and Ar in collisions with meth hydroxyl, and perfluorinated self-assembled monolayers. Physical Chemistry Chemical Physics, 2010 12, 12533.
45	Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition. Scientific Reports, 2017, 7, 773.
46	Infrared studies of propene and propene oxide adsorption on nanoparticulate $\mathrm{Au} / \mathrm{TiO} 2$. Surface Science, 2016, 652, 172-182.
47	Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.

Well-Ordered Self-Assembled Monolayers Created via Vapor-Phase Reactions on a Monolayer Template.
1.6
59 Geometry and energetics of CO adsorption on hydroxylated UiO-66. Physical Chemistry Chemica
Physics, 2019, 21,5078-5085.

$60 \quad$| Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare |
| :--- |
| agents on complex surfaces. Review of Scientific Instruments, 2014, 85, 014101. |Binding Sites, Geometry, and Energetics of Propene at Nanoparticulate Au/TiO₂. Journal of

Physical Chemistry C, 2017, 121, 1683-1689.$1.5 \quad 15$
Control of morphology in inert-gas condensation of metal oxide nanoparticles. Journal of MaterialsScience, 2009, 44, 4286-4295.
63 Corner Capping of Silsesquioxane Cages by Chemical Warfare Agent Simulants. Langmuir, 2005, 21,
11226-11231.$1.6 \quad 13$
Theoretical Study of the Stereodynamics of CO Collisions with $\mathrm{CH}<$ sub> $3</$ sub>- and$64 \quad \mathrm{CF}<$ sub> $3</$ sub>-Terminated Alkanethiolate Self-Assembled Monolayers. Journal of Physical Chemistry
65 Gasâ€"Surface Scattering Dynamics of CO <sub> $2</$ sub>, NO<sub> $2</$ sub $>$, and $\mathrm{O}<$ sub> $3</$ sub $>$ Collisions with Model Organic Surfaces. Journal of Physical Chemistry A, 2011, 115, 6194-6201.
1.113

High Photoreactivity of <i>0</i>-Nitrobenzyl Ligands on Gold. Journal of Physical Chemistry C, 2013,

Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro

Reversible Dissociation for Effective Storage of Diborane Gas within the UiO-66-NH2 Metalâ€"Organic Framework. ACS Applied Materials \& Interfaces, 2022, , .

