Roberto Barrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1983470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Year Mass-Trapping With Autocidal Gravid Ovitraps has Limited Influence on Insecticide Susceptibility in <i>Aedes aegypti</i> (Diptera: Culicidae) From Puerto Rico. Journal of Medical Entomology, 2022, 59, 314-319.	0.9	4
2	Cemeteries as sources of Aedes aegypti and other mosquito species in southeastern Puerto Rico. Tropical Medicine and International Health, 2022, , .	1.0	1
3	Surveillance and Control of <i>Culex quinquefasciatus</i> Using Autocidal Gravid Ovitraps. Journal of the American Mosquito Control Association, 2022, 38, 19-23.	0.2	0
4	New tools for Aedes control: mass trapping. Current Opinion in Insect Science, 2022, 52, 100942.	2.2	10
5	Lower socioeconomic status neighborhoods in Puerto Rico have more diverse mosquito communities and higher <i>Aedes aegypti</i> abundance. Journal of Urban Ecology, 2021, 7, .	0.6	4
6	Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. Microbial Ecology, 2021, , 1.	1.4	14
7	Improving the Safety and Acceptability of Autocidal Gravid Ovitraps (AGO Traps). Journal of the American Mosquito Control Association, 2021, 37, 61-67.	0.2	6
8	Role of Abandoned and Vacant Houses on Aedes aegypti Productivity. American Journal of Tropical Medicine and Hygiene, 2021, 104, 145-150.	0.6	7
9	Dispersal of female and male Aedes aegypti from discarded container habitats using a stable isotope mark-capture study design in South Texas. Scientific Reports, 2020, 10, 6803.	1.6	25
10	A 70% Reduction in Mosquito Populations Does Not Require Removal of 70% of Mosquitoes. Journal of Medical Entomology, 2020, 57, 1668-1670.	0.9	4
11	Factors Modulating Captures of Gravid Aedes aegypti Females. Journal of the American Mosquito Control Association, 2020, 36, 66-73.	0.2	1
12	Autocidal gravid ovitraps protect humans from chikungunya virus infection by reducing Aedes aegypti mosquito populations. PLoS Neglected Tropical Diseases, 2019, 13, e0007538.	1.3	23
13	Rapid Screening of Aedes aegypti Mosquitoes for Susceptibility to Insecticides as Part of Zika Emergency Response, Puerto Rico. Emerging Infectious Diseases, 2019, 25, 1959-1961.	2.0	13
14	Citywide Control of Aedes aegypti (Diptera: Culicidae) during the 2016 Zika Epidemic by Integrating Community Awareness, Education, Source Reduction, Larvicides, and Mass Mosquito Trapping. Journal of Medical Entomology, 2019, 56, 1033-1046.	0.9	19
15	Comparing vector and human surveillance strategies to detect arbovirus transmission: A simulation study for Zika virus detection in Puerto Rico. PLoS Neglected Tropical Diseases, 2019, 13, e0007988.	1.3	2
16	A comparison of mosquito densities, weather and infection rates of <scp><i>Aedes aegypti</i></scp> during the first epidemics of Chikungunya (2014) and Zika (2016) in areas with and without vector control in Puerto Rico. Medical and Veterinary Entomology, 2019, 33, 68-77.	0.7	31
17	Impacts of Hurricanes Irma and Maria on Aedes aegypti Populations, Aquatic Habitats, and Mosquito Infections with Dengue, Chikungunya, and Zika Viruses in Puerto Rico. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1413-1420.	0.6	25
18	Differences in Prevalence of Symptomatic Zika Virus Infection, by Age and Sex—Puerto Rico, 2016. Journal of Infectious Diseases, 2018, 217, 1678-1689.	1.9	33

#	Article	IF	CITATIONS
19	Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasites and Vectors, 2018, 11, 88.	1.0	22
20	Entomological Investigation of Aedes aegypti In Neighborhoods With Confirmed Human Arbovirus Infection In Puerto Rico. Journal of the American Mosquito Control Association, 2018, 34, 233-236.	0.2	5
21	Impact of Autocidal Gravid Ovitraps on Chikungunya Virus Incidence in <i>Aedes aegypti</i> (Diptera:) Tj ETQq1 1	0,784314	1 rgBT /Over
22	Effect of Temperature Thresholds on Modeled Aedes aegypti (Diptera: Culicidae) Population Dynamics. Journal of Medical Entomology, 2017, 54, 869-877.	0.9	8
23	Aedes aegypti (Diptera: Culicidae) Abundance Model Improved With Relative Humidity and Precipitation-Driven Egg Hatching. Journal of Medical Entomology, 2017, 54, 1375-1384.	0.9	36
24	Habitat and Density of Oviposition Opportunity Influences Aedes aegypti (Diptera: Culicidae) Flight Distance. Journal of Medical Entomology, 2017, 54, 1385-1389.	0.9	9
25	Considerations for Disrupting Dengue Virus Transmission; Ecology of Aedes aegypti and Current (Nongenetic) Methods of Control. , 2016, , 103-124.		4
26	Dengue Outbreak in Mombasa City, Kenya, 2013–2014: Entomologic Investigations. PLoS Neglected Tropical Diseases, 2016, 10, e0004981.	1.3	55
27	Non-human primate antibody response to mosquito salivary proteins: Implications for dengue virus transmission in Puerto Rico. Acta Tropica, 2016, 164, 369-374.	0.9	6
28	Knockdown Resistance Mutations in <i>Aedes aegypti</i> (Diptera: Culicidae) From Puerto Rico. Journal of Medical Entomology, 2016, 53, 1410-1414.	0.9	24
29	Evaluation of Alternative Killing Agents for <i>Aedes aegypti</i> (Diptera: Culicidae) in the Gravid <i>Aedes</i> Trap (GAT). Journal of Medical Entomology, 2016, 53, 873-879.	0.9	17
30	Operational Aspects of the Centers for Disease Control and Prevention Autocidal Gravid Ovitrap. Journal of the American Mosquito Control Association, 2016, 32, 254-257.	0.2	9
31	Susceptibility to Temephos and Spinosad in <i>Aedes aegypti</i> (Diptera: Culicidae) From Puerto Rico. Journal of Medical Entomology, 2016, 53, 1211-1217.	0.9	4
32	Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Research, 2016, 5, 194.	0.8	37
33	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	1.3	70
34	Reduced Incidence of Chikungunya Virus Infection in Communities with Ongoing <i>Aedes Aegypti</i> Mosquito Trap Intervention Studies — Salinas and Guayama, Puerto Rico, November 2015–February 2016. Morbidity and Mortality Weekly Report, 2016, 65, 479-480.	9.0	47
35	Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR. PLoS Neglected Tropical Diseases, 2015, 9, e0004002.	1.3	67
36	Evaluation of Household Bleach as an Ovicide for the Control of <i>Aedes aegypti</i> . Journal of the American Mosquito Control Association, 2015, 31, 77-84.	0.2	6

ROBERTO BARRERA

#	Article	IF	CITATIONS
37	Comparison of Vector Competence of Aedes mediovittatus and Aedes aegypti for Dengue Virus: Implications for Dengue Control in the Caribbean. PLoS Neglected Tropical Diseases, 2015, 9, e0003462.	1.3	43
38	Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of <i>Aedes aegypti</i> (Diptera: Culicidae). Journal of Medical Entomology, 2014, 51, 145-154.	0.9	106
39	Sustained, Area-Wide Control of Aedes aegypti Using CDC Autocidal Gravid Ovitraps. American Journal of Tropical Medicine and Hygiene, 2014, 91, 1269-1276.	0.6	67
40	An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasites and Vectors, 2013, 6, 225.	1.0	97
41	A Novel Autocidal Ovitrap for the Surveillance and Control of Aedes aegypti. Journal of the American Mosquito Control Association, 2013, 29, 293-296.	0.2	10
42	An Improved Trap to Capture Adult Container-Inhabiting Mosquitoes. Journal of the American Mosquito Control Association, 2013, 29, 358-368.	0.2	34
43	Arthropod Surveillance Programs: Basic Components, Strategies and Analysis. Annals of the Entomological Society of America, 2012, 105, 135-149.	1.3	47
44	Vertebrate Hosts of <i>Aedes aegypti</i> and <i>Aedes mediovittatus</i> (Diptera: Culicidae) in Rural Puerto Rico. Journal of Medical Entomology, 2012, 49, 917-921.	0.9	44
45	Co-occurrence Patterns of the Dengue Vector Aedes aegypti and Aedes mediovitattus, a Dengue Competent Mosquito in Puerto Rico. EcoHealth, 2011, 8, 365-375.	0.9	17
46	Mosquito (Diptera: Culicidae) Bloodmeal Sources During a Period of West Nile Virus Transmission in Puerto Rico. Journal of Medical Entomology, 2011, 48, 701-704.	0.9	13
47	Genetics and Morphology of Aedes aegypti (Diptera: Culicidae) in Septic Tanks in Puerto Rico. Journal of Medical Entomology, 2011, 48, 1095-1102.	0.9	10
48	Spatial Stability of Adult Aedes aegypti Populations. American Journal of Tropical Medicine and Hygiene, 2011, 85, 1087-1092.	0.6	38
49	Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico. PLoS Neglected Tropical Diseases, 2011, 5, e1378.	1.3	210
50	Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Medical and Veterinary Entomology, 2010, 24, 117-123.	0.7	77
51	Mosquito Vectors of West Nile Virus During an Epizootic Outbreak in Puerto Rico. Journal of Medical Entomology, 2010, 47, 1185-1195.	0.9	21
52	Examination of a Miniaturized Funnel Trap for Aedes aegypti (Diptera: Culicidae) Larval Sampling. Journal of Medical Entomology, 2010, 47, 1231-1234.	0.9	2
53	Seasonal and Habitat Effects on Dengue and West Nile Virus Vectors in San Juan, Puerto Rico. Journal of the American Mosquito Control Association, 2009, 25, 38-46.	0.2	19
54	Dynamics of Aedes aegypti and Culex quinquefasciatus in Septic Tanks. Journal of the American Mosquito Control Association, 2009, 25, 409-416.	0.2	38

ROBERTO BARRERA

#	Article	IF	CITATIONS
55	West Nile Virus from Blood Donors, Vertebrates, and Mosquitoes, Puerto Rico, 2007. Emerging Infectious Diseases, 2009, 15, 1298-1300.	2.0	24
56	Simplified pupal surveys of Aedes aegypti (L.) for entomologic surveillance and dengue control. American Journal of Tropical Medicine and Hygiene, 2009, 81, 100-7.	0.6	12
57	Unusual productivity of <i>Aedes aegypti </i> in septic tanks and its implications for dengue control. Medical and Veterinary Entomology, 2008, 22, 62-69.	0.7	123
58	First Isolation of West Nile Virus in the Caribbean. American Journal of Tropical Medicine and Hygiene, 2008, 78, 666-668.	0.6	34
59	First isolation of West Nile virus in the Caribbean. American Journal of Tropical Medicine and Hygiene, 2008, 78, 666-8.	0.6	16
60	HABITAT SEGREGATION OF DENGUE VECTORS ALONG AN URBAN ENVIRONMENTAL GRADIENT. American Journal of Tropical Medicine and Hygiene, 2007, 76, 820-826.	0.6	84
61	Habitat segregation of dengue vectors along an urban environmental gradient. American Journal of Tropical Medicine and Hygiene, 2007, 76, 820-6.	0.6	49
62	Ecological Factors Influencing <i>Aedes aegypti</i> (Diptera: Culicidae) Productivity in Artificial Containers in Salinas, Puerto Rico. Journal of Medical Entomology, 2006, 43, 484-492.	0.9	112
63	Sample-size requirements for developing strategies, based on the pupal/demographic survey, for the targeted control of dengue. Annals of Tropical Medicine and Parasitology, 2006, 100, 33-43.	1.6	10
64	Sample sizes for identifying the key types of container occupied by dengue-vector pupae: the use of entropy in analyses of compositional data. Annals of Tropical Medicine and Parasitology, 2006, 100, 5-16.	1.6	15
65	USE OF THE PUPAL SURVEY TECHNIQUE FOR MEASURING AEDES AEGYPTI (DIPTERA: CULICIDAE) PRODUCTIVITY IN PUERTO RICO. American Journal of Tropical Medicine and Hygiene, 2006, 74, 290-302.	0.6	89
66	Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. American Journal of Tropical Medicine and Hygiene, 2006, 74, 290-302.	0.6	42
67	Spatial Dispersion of Adult Mosquitoes (Diptera: Culicidae) in a Sylvatic Focus of Venezuelan Equine Encephalitis Virus. Journal of Medical Entomology, 2001, 38, 813-821.	0.9	65