Jingwei Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1983388/publications.pdf

Version: 2024-02-01

		30070	43889
110	8,587	54	91
papers	citations	h-index	g-index
112	112	112	8534
112	112	112	0334
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Janus Membranes: Exploring Duality for Advanced Separation. Angewandte Chemie - International Edition, 2016, 55, 13398-13407.	13.8	407
2	Elevated Performance of Thin Film Nanocomposite Membranes Enabled by Modified Hydrophilic MOFs for Nanofiltration. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1975-1986.	8.0	368
3	Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. Journal of Materials Chemistry A, 2016, 4, 1980-1990.	10.3	326
4	Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. Journal of Membrane Science, 2016, 511, 180-206.	8.2	249
5	The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. Journal of Materials Chemistry A, 2018, 6, 3773-3792.	10.3	223
6	Dopamine: Just the Right Medicine for Membranes. Advanced Functional Materials, 2018, 28, 1705327.	14.9	222
7	Formation of Ultrathin, Continuous Metal–Organic Framework Membranes on Flexible Polymer Substrates. Angewandte Chemie - International Edition, 2016, 55, 3947-3951.	13.8	207
8	Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 2018, 550, 173-197.	8.2	198
9	Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane. Journal of Membrane Science, 2014, 469, 19-30.	8.2	193
10	Janus Membranes: Creating Asymmetry for Energy Efficiency. Advanced Materials, 2018, 30, e1801495.	21.0	193
11	Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520, 860-868.	8.2	185
12	Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes. Journal of Membrane Science, 2017, 524, 266-279.	8.2	182
13	Graphene-based antimicrobial polymeric membranes: a review. Journal of Materials Chemistry A, 2017, 5, 6776-6793.	10.3	174
14	Laccase immobilization on titania nanoparticles and titania-functionalized membranes. Journal of Membrane Science, 2014, 452, 229-240.	8.2	173
15	Metal–organic framework gels and monoliths. Chemical Science, 2020, 11, 310-323.	7.4	173
16	MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. Journal of Materials Chemistry A, 2019, 7, 16313-16322.	10.3	166
17	Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 918-931.	10.3	151
18	Rapid water transport through controllable, ultrathin polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2018, 6, 15701-15709.	10.3	148

#	Article	IF	Citations
19	Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules. CheM, 2019, 5, 1597-1608.	11.7	148
20	Surface and interface engineering for organic–inorganic composite membranes. Journal of Materials Chemistry A, 2016, 4, 9716-9729.	10.3	143
21	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 2021, 374, 621-625.	12.6	137
22	Switchable oil/water separation with efficient and robust Janus nanofiber membranes. Carbon, 2017, 115, 477-485.	10.3	131
23	High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine. Journal of Membrane Science, 2018, 554, 97-108.	8.2	131
24	Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Separation and Purification Technology, 2017, 178, 215-223.	7.9	125
25	Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon, 2017, 111, 689-704.	10.3	122
26	Janus Membranes with Asymmetric Wettability for Fine Bubble Aeration. Advanced Materials Interfaces, 2016, 3, 1500774.	3.7	119
27	Janus hollow fiber membrane with a mussel-inspired coating on the lumen surface for direct contact membrane distillation. Journal of Membrane Science, 2017, 523, 1-7.	8.2	110
28	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nature Communications, 2019, 10, 1340.	12.8	100
29	Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. Journal of Hazardous Materials, 2017, 338, 93-101.	12.4	99
30	Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor. Journal of Membrane Science, 2016, 502, 11-20.	8.2	98
31	Metal-organic framework crystal-glass composites. Nature Communications, 2019, 10, 2580.	12.8	97
32	Biocatalytic Janus membranes for CO ₂ removal utilizing carbonic anhydrase. Journal of Materials Chemistry A, 2015, 3, 17032-17041.	10.3	92
33	Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane. Journal of Materials Chemistry A, 2015, 3, 18696-18705.	10.3	85
34	Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability. Journal of Membrane Science, 2016, 510, 27-37.	8.2	85
35	Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Lightâ€Driven Hydrogen Generation. Advanced Functional Materials, 2019, 29, 1905683.	14.9	85
36	Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration. Journal of Membrane Science, 2016, 520, 869-880.	8.2	83

#	Article	IF	Citations
37	Halogenated Metal–Organic Framework Glasses and Liquids. Journal of the American Chemical Society, 2020, 142, 3880-3890.	13.7	83
38	Morphologically Tunable MOF Nanosheets in Mixed Matrix Membranes for CO ₂ Separation. Chemistry of Materials, 2020, 32, 4174-4184.	6.7	82
39	Gelled Graphene Oxide–Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO ₂ Separation. ACS Applied Materials & Interfaces, 2018, 10, 7389-7400.	8.0	79
40	Preparation of titania based biocatalytic nanoparticles and membranes for CO ₂ conversion. Journal of Materials Chemistry A, 2015, 3, 3332-3342.	10.3	77
41	Enzyme-embedded metal–organic framework membranes on polymeric substrates for efficient CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 19954-19962.	10.3	74
42	Hybrid membrane with TiO 2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A. Bioresource Technology, 2014, 169, 475-483.	9.6	73
43	Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Materials Today, 2019, 28, 10-16.	14.2	7 3
44	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie - International Edition, 2020, 59, 19434-19449.	13.8	73
45	Novel metal–organic framework materials: blends, liquids, glasses and crystal–glass composites. Chemical Communications, 2019, 55, 8705-8715.	4.1	72
46	High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C ₃ N ₄ nanosheets for enhanced selectivity towards organics and salts. Environmental Science: Nano, 2019, 6, 2958-2967.	4.3	68
47	Flux melting of metal–organic frameworks. Chemical Science, 2019, 10, 3592-3601.	7.4	67
48	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pHâ€Speed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	14.9	66
49	Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 2018, 9, 3508-3516.	7.4	65
50	Synthesis and Properties of a Compositional Series of MIL-53(Al) Metal–Organic Framework Crystal-Glass Composites. Journal of the American Chemical Society, 2019, 141, 15641-15648.	13.7	65
51	Oriented Clay Nanotube Membrane Assembled on Microporous Polymeric Substrates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34914-34923.	8.0	62
52	Composite PVA/PVDF pervaporation membrane for concentrated brine desalination: Salt rejection, membrane fouling and defect control. Desalination, 2017, 422, 49-58.	8.2	62
53	Biomimetic synthesis of coordination network materials: Recent advances in MOFs and MPNs. Applied Materials Today, 2018, 10, 93-105.	4.3	62
54	Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach. Journal of Materials Chemistry A, 2017, 5, 7732-7737.	10.3	61

#	Article	IF	Citations
55	In-situ growth of metal-organic framework film on a polydopamine-modified flexible substrate for antibacterial and forward osmosis membranes. Separation and Purification Technology, 2020, 236, 116239.	7.9	56
56	Biocatalytic gas-liquid membrane contactors for CO2 hydration with immobilized carbonic anhydrase. Journal of Membrane Science, 2016, 520, 303-313.	8.2	53
57	Superhydrophobic membranes via facile bio-inspired mineralization for vacuum membrane distillation. Journal of Membrane Science, 2017, 540, 98-107.	8.2	53
58	Improving the hydrostability of ZIF-8 membrane by biomolecule towards enhanced nanofiltration performance for dye removal. Journal of Membrane Science, 2021, 618, 118630.	8.2	52
59	Phase boundary engineering of metal-organic-framework-derived carbonaceous nickel selenides for sodium-ion batteries. Nano Research, 2020, 13, 2289-2298.	10.4	51
60	A novel long-lasting antifouling membrane modified with bifunctional capsaicin-mimic moieties via in situ polymerization for efficient water purification. Journal of Materials Chemistry A, 2016, 4, 10352-10362.	10.3	48
61	Ultraselective Pebax Membranes Enabled by Templated Microphase Separation. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 20006-20013.	8.0	48
62	Preparation of Iridescent 2D Photonic Crystals by Using a Mussel-Inspired Spatial Patterning of ZIF-8 with Potential Applications in Optical Switch and Chemical Sensor. ACS Applied Materials & Emp; Interfaces, 2017, 9, 38076-38080.	8.0	47
63	Designing Angstromâ€Scale Asymmetric MOFâ€onâ€MOF Cavities for High Monovalent Ion Selectivity. Advanced Materials, 2022, 34, e2107878.	21.0	47
64	Graphene Oxide Nanosheets Based Novel Facilitated Transport Membranes for Efficient CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 5403-5414.	3.7	46
65	Impact of wastewater derived dissolved interfering compounds on growth, enzymatic activity and trace organic contaminant removal of white rot fungi – A critical review. Journal of Environmental Management, 2017, 201, 89-109.	7.8	46
66	Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653, 120520.	8.2	44
67	Interfacial engineering of a polymer–MOF composite by ⟨i⟩in situ⟨/i⟩ vitrification. Chemical Communications, 2020, 56, 3609-3612.	4.1	43
68	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
69	Templated growth of vertically aligned 2D metal–organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 5811-5818.	10.3	40
70	Pinning Down the Water Transport Mechanism in Graphene Oxide Pervaporation Desalination Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 4231-4239.	3.7	35
71	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal of Materials Chemistry A, 2018, 6, 2908-2913.	10.3	33
72	Formation of Ultrathin, Continuous Metal–Organic Framework Membranes on Flexible Polymer Substrates. Angewandte Chemie, 2016, 128, 4015-4019.	2.0	32

#	Article	IF	CITATIONS
73	Iron Phthalocyanine/Two-Dimensional Metal–Organic Framework Composite Nanosheets for Enhanced Alkaline Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 9987-9995.	4.0	32
74	Strategically Designing a Pumpless Microfluidic Device on an "Inert―Polypropylene Substrate with Potential Application in Biosensing and Diagnostics. Langmuir, 2017, 33, 5565-5576.	3.5	31
75	Removal of trace organic contaminants by enzymatic membrane bioreactors: Role of membrane retention and biodegradation. Journal of Membrane Science, 2020, 611, 118345.	8.2	30
76	Unraveling the Interfacial Structure–Performance Correlation of Flexible Metal–Organic Framework Membranes on Polymeric Substrates. ACS Applied Materials & 1, 5570-5577.	8.0	29
77	Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes. Nano Letters, 2020, 20, 1272-1279.	9.1	28
78	lono-Elastomer-Based Wearable Strain Sensor with Real-Time Thermomechanical Dual Response. ACS Applied Materials & Dual Response.	8.0	27
79	Machine Learning Guided Dopant Selection for Metal Oxideâ€Based Photoelectrochemical Water Splitting: The Case Study of Fe ₂ O ₃ and CuO. Advanced Materials, 2022, 34, e2106776.	21.0	26
80	Janus Reactors with Highly Efficient Enzymatic CO ₂ Nanocascade at Air–Liquid Interface. ACS Applied Materials & Interfaces, 2017, 9, 42806-42815.	8.0	25
81	Suppressing Salt Transport through Composite Pervaporation Membranes for Brine Desalination. Applied Sciences (Switzerland), 2017, 7, 856.	2.5	24
82	Singleâ€Enzyme Biofuel Cells. Angewandte Chemie - International Edition, 2017, 56, 9762-9766.	13.8	23
83	Flexible solar-rechargeable energy system. Energy Storage Materials, 2020, 32, 356-376.	18.0	23
84	<i>Biodesalination</i> â€"On harnessing the potential of nature's desalination processes. Bioinspiration and Biomimetics, 2016, 11, 041001.	2.9	21
85	Heteroepitaxial growth of vertically orientated zeolitic imidazolate framework‣ (Co/Znâ€ZIF‣) molecular sieve membranes. AICHE Journal, 2020, 66, e16935.	3.6	21
86	Oriented Zeolitic imidazolate framework membranes within polymeric matrices for effective N2/CO2 separation. Journal of Membrane Science, 2019, 572, 82-91.	8.2	20
87	Fouling mitigation in submerged VMD for the treatment of brackish groundwater concentrates with transverse vibration and crystallizer. Desalination, 2018, 426, 32-41.	8.2	19
88	Experimental investigation of low temperature distillation coupled with spray evaporation. Desalination, 2010, 258, 5-11.	8.2	18
89	Gold/silver decorated magnetic nanostructures as theranostic agents: Synthesis, characterization and in-vitro study. Journal of Molecular Liquids, 2017, 247, 238-245.	4.9	18
90	Effect of Inorganic Salt Blending on the CO ₂ Separation Performance and Morphology of Pebax1657/Ionic Liquid Gel Membranes. Industrial & Engineering Chemistry Research, 2019, 58, 3304-3313.	3.7	18

#	Article	IF	Citations
91	Open-source industrial-scale module simulation: Paving the way towards the right configuration choice for membrane distillation. Desalination, 2019, 464, 48-62.	8.2	18
92	Aquatic environment remediation by atomic layer deposition-based multi-functional materials: A review. Journal of Hazardous Materials, 2021, 402, 123513.	12.4	15
93	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie, 2020, 132, 19602-19617.	2.0	14
94	A facile, bio-inspired synthetic route toward flower-like copper phosphate crystals with high specific surface area. Materials Letters, 2015, 161, 601-604.	2.6	13
95	Janusâ€Membranen: Erforschung ihrer Dualitäfür hochentwickelte Stofftrennungen. Angewandte Chemie, 2016, 128, 13596-13605.	2.0	13
96	Binder-free mechanochemical metal–organic framework nanocrystal coatings. Nanoscale, 2022, 14, 2221-2229.	5.6	11
97	Crosslinked microporous polyarylate membranes with high Kr/Xe separation performance and high stability under irradiation. Journal of Membrane Science, 2020, 611, 118280.	8.2	9
98	Mechanically stable structured porous boron nitride with high volumetric adsorption capacity. Journal of Materials Chemistry A, 2021, 9, 13366-13373.	10.3	9
99	Janus Membrane: Janus Membranes: Creating Asymmetry for Energy Efficiency (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870328.	21.0	7
100	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	2.0	7
101	Membranes: Dopamine: Just the Right Medicine for Membranes (Adv. Funct. Mater. 8/2018). Advanced Functional Materials, 2018, 28, 1870052.	14.9	6
102	Transport tuning strategies in MOF film synthesis – a perspective. Journal of Materials Chemistry A, 2022, 10, 14641-14654.	10.3	6
103	Singleâ€Enzyme Biofuel Cells. Angewandte Chemie, 2017, 129, 9894-9898.	2.0	4
104	Fluorescence Enhancement through Confined Oligomerization in Nanochannels: An Anthryl Oligomer in a Metal-Organic Framework., 2021, 3, 1599-1604.		4
105	Carbonic anhydrase membranes for carbon capture and storage. , 2022, 2, 100031.		4
106	Electron Ptychography Using Fast Binary 4D STEM Data. Microscopy and Microanalysis, 2019, 25, 1662-1663.	0.4	3
107	Editorial: Superwetting Interfaces for Oil/Water Separation. Frontiers in Chemistry, 2021, 9, 667106.	3.6	2
108	Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical Communications, 2020, 56, 10074-10077.	4.1	1

#	Article	IF	CITATIONS
109	Sintering of metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100932.	5.6	1
110	Local Coordination in Metal-Organic Frameworks Probed in the Vibrational and Optical Regime by EELS. Microscopy and Microanalysis, 2019, 25, 606-607.	0.4	0