
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1983061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Science Advances, 2022, 8, eabm2469.	4.7	53
2	Bottlebrush polymer gels: architectural control over swelling and osmotic bulk modulus. Soft Matter, 2022, 18, 1239-1246.	1.2	8
3	Colloidal particles interacting with a polymer brush: a self-consistent field theory. Physical Chemistry Chemical Physics, 2022, 24, 8463-8476.	1.3	6
4	Theory of Mesophases of Triblock Comb-Shaped Copolymers: Effects of Dead Zones and Bridging. Macromolecules, 2022, 55, 6040-6055.	2.2	1
5	Proteins and Polyampholytes Interacting with Polyelectrolyte Brushes and Microgels: The Charge Reversal Concept Revised. Langmuir, 2021, 37, 2865-2873.	1.6	10
6	Self-Assembly of Bottlebrush Block Copolymers in Selective Solvent: Micellar Structures. Polymers, 2021, 13, 1351.	2.0	8
7	Theory of Microphase Segregation in ABA Triblock Comb-Shaped Copolymers: Lamellar Mesophase. Macromolecules, 2021, 54, 4747-4759.	2.2	5
8	Micelles Formed by an AB Copolymer with Bottlebrush Blocks: Scaling Theory. Journal of Physical Chemistry B, 2021, 125, 12603-12616.	1.2	6
9	Polymer Brush in a Nanopore: Effects of Solvent Strength and Macromolecular Architecture Studied by Self-Consistent Field and Scaling Theory. Polymers, 2021, 13, 3929.	2.0	3
10	Dendron Brushes in Polymer Medium: Interpenetration and Depletion. Macromolecules, 2020, 53, 387-397.	2.2	4
11	Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory. Physical Chemistry Chemical Physics, 2020, 22, 23385-23398.	1.3	7
12	Morphological Transitions in Patchy Nanoparticles. ACS Nano, 2020, 14, 4577-4584.	7.3	19
13	Microphase Segregation in the Melts of Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 2582-2593.	2.2	32
14	Theory of polyelectrolyte dendrigrafts. Colloid and Polymer Science, 2020, 298, 951-959.	1.0	2
15	Electroresponsive Polyelectrolyte Brushes Studied by Self-Consistent Field Theory. Polymers, 2020, 12, 898.	2.0	9
16	Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules, 2020, 53, 4533-4540.	2.2	0
17	Helicoidal Patterning of Gold Nanorods by Phase Separation in Mixed Polymer Brushes. Langmuir, 2019, 35, 15872-15879.	1.6	17
18	Theory of Microphase Segregation in the Melts of Copolymers with Dendritically Branched, Bottlebrush, or Cycled Blocks. ACS Macro Letters, 2019, 8, 1075-1079.	2.3	14

EKATERINA B ZHULINA

#	Article	IF	CITATIONS
19	Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block Copolymer Ligands. Angewandte Chemie, 2019, 131, 9370-9375.	1.6	2
20	Helicoidal Patterning of Nanorods with Polymer Ligands. Angewandte Chemie, 2019, 131, 3155-3159.	1.6	2
21	Temperature-Induced Re-Entrant Morphological Transitions in Block-Copolymer Micelles. Langmuir, 2019, 35, 2680-2691.	1.6	9
22	Self-Assembly of Linear-Dendritic and Double Dendritic Block Copolymers: From Dendromicelles to Dendrimersomes. Macromolecules, 2019, 52, 3655-3667.	2.2	14
23	Staged Surface Patterning and Selfâ€Assembly of Nanoparticles Functionalized with Endâ€Grafted Block Copolymer Ligands. Angewandte Chemie - International Edition, 2019, 58, 9269-9274.	7.2	41
24	Solution and Melts of Barbwire Bottlebrushes: Hierarchical Structure and Scale-Dependent Elasticity. Macromolecules, 2019, 52, 1671-1684.	2.2	28
25	Polymer Networks Formed by Molecular Brushes: Scaling Theory. Polymer Science - Series A, 2019, 61, 799-804.	0.4	6
26	Non-linear elasticity effects and stratification in brushes of branched polyelectrolytes. Journal of Chemical Physics, 2019, 151, 214902.	1.2	1
27	Helicoidal Patterning of Nanorods with Polymer Ligands. Angewandte Chemie - International Edition, 2019, 58, 3123-3127.	7.2	32
28	Impact of Macromolecular Architecture on Bending Rigidity of Dendronized Surfaces. Macromolecules, 2018, 51, 3315-3329.	2.2	4
29	Effect of chain architecture on properties of self-assembled dendron brushes. Polymer, 2018, 144, 142-149.	1.8	3
30	Theory of Linear–Dendritic Block Copolymer Micelles. ACS Macro Letters, 2018, 7, 42-46.	2.3	12
31	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. Macromolecules, 2018, 51, 10028-10039.	2.2	61
32	Conformations of polyelectrolyte molecular brushes: A mean-field theory. Journal of Chemical Physics, 2018, 149, 184904.	1.2	13
33	Self-Consistent Field Analysis of Molecular Bottle-Brushes with Primary and Secondary Side Chains: Induced Persistence Length and Lateral Thickness. Polymer Science - Series C, 2018, 60, 160-171.	0.8	0
34	Planar Brush of End-Tethered Molecular Bottle-Brushes. Scaling Mode. Polymer Science - Series C, 2018, 60, 76-83.	0.8	3
35	Scaling Theory of Complex Coacervate Core Micelles. ACS Macro Letters, 2018, 7, 811-816.	2.3	38
36	Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory. Soft Matter, 2018, 14, 6230-6242.	1.2	16

#	Article	IF	CITATIONS
37	Complex Coacervate of Weakly Charged Polyelectrolytes: Diagram of States. Macromolecules, 2018, 51, 3788-3801.	2.2	60
38	Dendron and Hyperbranched Polymer Brushes in Good and Poor Solvents. Langmuir, 2017, 33, 1315-1325.	1.6	20
39	Structure and lubrication of solvent-free dendron brushes. Polymer, 2017, 120, 223-235.	1.8	8
40	Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. ACS Nano, 2017, 11, 4995-5002.	7.3	63
41	Self-consistent field theory of polyelectrolyte brushes with finite chain extensibility. Journal of Chemical Physics, 2017, 146, 214901.	1.2	22
42	Interaction forces and lubrication of dendronized surfaces. Current Opinion in Colloid and Interface Science, 2017, 27, 50-56.	3.4	15
43	Dendritic polyelectrolyte brushes. Polymer Science - Series C, 2017, 59, 106-118.	0.8	0
44	Monte Carlo Simulation of the Neurofilament Brush. Israel Journal of Chemistry, 2016, 56, 599-606.	1.0	9
45	Charge-controlled nano-structuring in partially collapsed star-shaped macromolecules. Soft Matter, 2016, 12, 4846-4852.	1.2	34
46	Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538, 79-83.	13.7	257
47	Brushes of Cycled Macromolecules: Structure and Lubricating Properties. Macromolecules, 2016, 49, 8758-8767.	2.2	27
48	Star Brushes Under Deformation: Structure and Thermodynamics. Macromolecular Symposia, 2015, 348, 33-43.	0.4	9
49	Theory of Brushes Formed by Î ⁻ Shaped Macromolecules at Solid–Liquid Interfaces. Langmuir, 2015, 31, 6514-6522.	1.6	29
50	Elastin-like Polypeptide Diblock Copolymers Self-Assemble into Weak Micelles. Macromolecules, 2015, 48, 4183-4195.	2.2	86
51	Brushes of Dendritically Branched Polyelectrolytes. Macromolecules, 2015, 48, 1499-1508.	2.2	21
52	Ideal Mixing in Multicomponent Brushes of Branched Polymers. Macromolecules, 2015, 48, 8025-8035.	2.2	26
53	Persistence length of dendronized polymers: the self-consistent field theory. Soft Matter, 2015, 11, 9367-9378.	1.2	22
54	Dendron brushes and dendronized polymers: a theoretical outlook. Soft Matter, 2014, 10, 2093-2101.	1.2	51

#	Article	IF	CITATIONS
55	Lubrication by Polyelectrolyte Brushes. Macromolecules, 2014, 47, 5825-5838.	2.2	79
56	Analytical self-consistent field model of arm-grafted starlike polymers in nonlinear elasticity regime. Polymer, 2014, 55, 5160-5167.	1.8	17
57	Interactions between Brushes of Root-Tethered Dendrons. Macromolecules, 2014, 47, 6932-6945.	2.2	27
58	Theory of self-assembly of triblock ter-polymers in selective solvent towards corona-compartmentalized (Janus) micelles. Polymer, 2013, 54, 2043-2048.	1.8	9
59	Effect of Block Copolymer Architecture on Morphology of Self-Assembled Aggregates in Solution. ACS Macro Letters, 2013, 2, 292-295.	2.3	30
60	Stimuliâ€Responsive Materials with Selfâ€Healing Antifouling Surface via 3D Polymer Grafting. Advanced Functional Materials, 2013, 23, 4593-4600.	7.8	96
61	Repulsive Forces between Spherical Polyelectrolyte Brushes in Salt-Free Solution. Zeitschrift Fur Physikalische Chemie, 2012, 226, 625-643.	1.4	12
62	Persistence Length of Dendritic Molecular Brushes. ACS Macro Letters, 2012, 1, 1166-1169.	2.3	23
63	Field-Directed Self-Assembly with Locking Nanoparticles. Nano Letters, 2012, 12, 3814-3820.	4.5	38
64	On the Two-Population Structure of Brushes Made of Arm-Grafted Polymer Stars. Macromolecules, 2012, 45, 7260-7273.	2.2	65
65	Precise hierarchical self-assembly of multicompartment micelles. Nature Communications, 2012, 3, 710.	5.8	504
66	Collapse of a weak polyelectrolyte star in a poor solvent. Soft Matter, 2012, 8, 9446.	1.2	15
67	Theory of Block Polymer Micelles: Recent Advances and Current Challenges. Macromolecules, 2012, 45, 4429-4440.	2.2	206
68	Ionic strength dependence of polyelectrolyte brush thickness. Soft Matter, 2012, 8, 9376.	1.2	62
69	Colloid-Brush Interactions: The Effect of Solvent Quality. Macromolecules, 2011, 44, 3622-3638.	2.2	69
70	Poisson–Boltzmann Theory of pH-Sensitive (Annealing) Polyelectrolyte Brush. Langmuir, 2011, 27, 10615-10633.	1.6	95
71	Conformations and Solution Properties of Star-Branched Polyelectrolytes. Advances in Polymer Science, 2010, , 1-55.	0.4	25
72	How the projection domains of NF-L and α-internexin determine the conformations of NF-M and NF-H in neurofilaments. European Biophysics Journal, 2010, 39, 1323-1334.	1.2	28

#	Article	IF	CITATIONS
73	Atomic Force Microscopy of Polymer Brushes: Colloidal versus Sharp Tips. Langmuir, 2010, 26, 8933-8940.	1.6	58
74	The Polymer Brush Model of Neurofilament Projections: Effect of Protein Composition. Biophysical Journal, 2010, 98, 462-469.	0.2	21
75	Monte Carlo Simulations of Tau Proteins: Effect of Phosphorylation. Biophysical Journal, 2010, 99, 2387-2397.	0.2	37
76	Molecular dynamics simulations of a polyelectrolyte star in poor solvent. Soft Matter, 2010, 6, 1872.	1.2	31
77	Modeling of the 3RS tau protein with self-consistent field method and Monte Carlo simulation. Soft Matter, 2010, 6, 5533.	1.2	5
78	Amphiphilic Graft Copolymers in Selective Solvents: Molecular Dynamics Simulations and Scaling Theory. Macromolecules, 2009, 42, 6748-6760.	2.2	67
79	Interpolyelectrolyte Complexes between Starlike and Linear Macromolecules: A Structural Model for Nonviral Gene Vectors. Langmuir, 2009, 25, 1915-1918.	1.6	30
80	Tension Amplification in Molecular Brushes in Solutions and on Substrates. Journal of Physical Chemistry B, 2009, 113, 3750-3768.	1.2	96
81	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi><mml:mi mathvariant="normal">H</mml:mi </mml:math> -Triggered Block Copolymer Micelle-to-Micelle Phase Transition. Physical Review Letters. 2009. 103. 118301.	2.9	40
82	On the polyelectrolyte brush model of neurofilaments. Soft Matter, 2009, 5, 2836.	1.2	19
83	Effect of the Ionic Strength on Collapse Transition in Starâ€like Polyelectrolytes. Macromolecular Symposia, 2009, 278, 24-31.	0.4	8
84	On the Curvature Energy of a Thin Membrane Decorated by Polymer Brushes. Macromolecules, 2008, 41, 478-488.	2.2	29
85	Scaling Theory of 3-Miktoarm ABC Copolymer Micelles in Selective Solvent. Macromolecules, 2008, 41, 5934-5944.	2.2	31
86	Effect of the Soluble Block Size on Spherical Diblock Copolymer Micelles. Macromolecules, 2008, 41, 6555-6563.	2.2	58
87	A Self-Consistent Field Analysis of the Neurofilament Brush with Amino-Acid Resolution. Biophysical Journal, 2007, 93, 1421-1430.	0.2	51
88	Effect of the Ionic Strength and pH on the Equilibrium Structure of a Neurofilament Brush. Biophysical Journal, 2007, 93, 1452-1463.	0.2	39
89	Responsive Polymer Brushes. , 2007, , 53-80.		Ο
90	Hybridization at a Surface:Â The Role of Spacers in DNA Microarrays. Langmuir, 2006, 22, 11290-11304.	1.6	45

#	Article	IF	CITATIONS
91	Coexistence of Crew-Cut and Starlike Spherical Micelles Composed of Copolymers with an Annealed Polyelectrolyte Block. Macromolecules, 2006, 39, 3628-3641.	2.2	32
92	On the hybridization isotherms of DNA microarrays: the Langmuir model and its extensions. Journal of Physics Condensed Matter, 2006, 18, S463-S490.	0.7	85
93	Diblock Copolymer Micelles in a Dilute Solution. Macromolecules, 2005, 38, 5330-5351.	2.2	282
94	Scaling Theory of Diblock Polyampholyte Solutions. Macromolecules, 2005, 38, 8870-8881.	2.2	83
95	Amphiphilic Graft Copolymer in a Selective Solvent:  Intramolecular Structures and Conformational Transitions. Macromolecules, 2005, 38, 2506-2514.	2.2	119
96	Reentrant Morphological Transitions in Copolymer Micelles with pH-Sensitive Corona. Langmuir, 2005, 21, 3229-3231.	1.6	39
97	Theory of Morphological Transitions in Weakly Dissociating Diblock Polyelectrolyte Micelles. Macromolecules, 2005, 38, 6726-6741.	2.2	30
98	Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines. Biophysical Journal, 2005, 89, 796-811.	0.2	89
99	Hybridization Isotherms of DNA Microarrays and the Quantification of Mutation Studies. Clinical Chemistry, 2004, 50, 2254-2262.	1.5	16
100	Sensitivity, Specificity, and the Hybridization Isotherms of DNA Chips. Biophysical Journal, 2004, 86, 718-730.	0.2	127
101	Morphology of Micelles Formed by Diblock Copolymer with a Polyelectrolyte Block. Macromolecules, 2003, 36, 10029-10036.	2.2	89
102	On the charge overcompensation of quenched polyelectrolyte stars electrostatically adsorbed onto a quenched oppositely charged planar surface. Journal of Chemical Physics, 2003, 118, 969-980.	1.2	7
103	Self-consistent field theory of brushes of neutral water-soluble polymers. Journal of Chemical Physics, 2003, 119, 10977-10988.	1.2	83
104	Effect of Salt on Self-Assembly in Charged Block Copolymer Micelles. Macromolecules, 2002, 35, 4472-4480.	2.2	97
105	An Annealed Polyelectrolyte Brush in a Polarâ^'Nonpolar Binary Solvent:Â Effect of pH and Ionic Strength. Macromolecules, 2002, 35, 4739-4752.	2.2	24
106	Self-Assembly in Solution of Block Copolymers with Annealing Polyelectrolyte Blocks. Macromolecules, 2002, 35, 9191-9203.	2.2	68
107	Annealed Star-Branched Polyelectrolytes in Solution. Macromolecules, 2002, 35, 9176-9190.	2.2	67
108	Effect of a Polymer Brush on Capillary Condensation. Langmuir, 2001, 17, 4459-4466.	1.6	21

7

#	Article	IF	CITATIONS
109	Structure of Adsorbed Polyampholyte Layers at Charged Objects. Macromolecules, 2001, 34, 627-639.	2.2	25
110	Adsorption Isotherms of Polyampholytes at Charged Spherical Particles. Journal of Physical Chemistry B, 2001, 105, 8917-8930.	1.2	14
111	Adsorption of Tethered Polyelectrolytes onto Oppositely Charged Solidâ [^] Liquid Interfaces. Langmuir, 2001, 17, 1277-1293.	1.6	25
112	Association of Ionized Polymer Micelles with Oppositely Charged Polyelectrolytes. Macromolecules, 2001, 34, 5053-5066.	2.2	19
113	Deformation of a Polymer Brush Immersed in a Binary Solvent. Macromolecular Theory and Simulations, 2001, 10, 719.	0.6	11
114	Polyelectrolytes tethered to a similarly charged surface. Journal of Chemical Physics, 2001, 114, 7700-7712.	1.2	31
115	Amphiphilic polymer brush in a mixture of incompatible liquids. Macromolecular Theory and Simulations, 2000, 9, 47-55.	0.6	9
116	Screening Effects in a Polyelectrolyte Brush:Â Self-Consistent-Field Theory. Macromolecules, 2000, 33, 4945-4953.	2.2	144
117	Amphiphilic Polymer Brush in a Mixture of Incompatible Liquids. Numerical Self-Consistent-Field Calculations. Macromolecules, 2000, 33, 1072-1081.	2.2	18
118	Static Forces in Confined Polyelectrolyte Layers. Macromolecules, 2000, 33, 3488-3491.	2.2	17
119	Wetting of a Polymer Brush, a System with Pronounced Critical Wetting. Langmuir, 2000, 16, 7082-7087.	1.6	11
120	TAILORING POLYMER INTERFACES THROUGH CONFINEMENT. , 2000, , 51-80.		0
121	Screening in Solutions of Star-Branched Polyelectrolytes. Macromolecules, 1999, 32, 2365-2377.	2.2	93
122	Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains:Â Guidelines for Controlling the Surface Separation in Intercalated Polymerâ^'Clay Composites. Langmuir, 1999, 15, 3935-3943.	1.6	63
123	Modeling the Phase Behavior of Polymer/Clay Nanocomposites. Accounts of Chemical Research, 1999, 32, 651-657.	7.6	170
124	Polyelectrolyte Brush Interaction with Multivalent Ions. Macromolecules, 1999, 32, 8189-8196.	2.2	64
125	Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. ACS Symposium Series, 1999, , 369-381.	0.5	1
126	Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. Macromolecules, 1998, 31, 8370-8381.	2.2	329

#	Article	IF	CITATIONS
127	Modeling the Interactions between Atomic Force Microscope Tips and Polymeric Substrates. Langmuir, 1998, 14, 4615-4622.	1.6	10
128	Absorption of a Polyelectrolyte Brush into an Oppositely Charged Layer. Macromolecules, 1998, 31, 7413-7422.	2.2	20
129	Using tethered triblock copolymers to mediate the interaction between substrates. Journal of Chemical Physics, 1998, 108, 5981-5989.	1.2	16
130	Behavior of tethered polyelectrolytes in poor solvents. Journal of Chemical Physics, 1998, 108, 1175-1183.	1.2	33
131	Patterned Polymer Films. MRS Bulletin, 1997, 22, 16-21.	1.7	9
132	Structure and interaction of weakly charged polyelectrolyte brushes: Self-consistent field theory. Journal of Chemical Physics, 1997, 107, 5952-5967.	1.2	205
133	Attraction and Novel Phase Behavior between Like-Charged Polymer Layers. Macromolecules, 1997, 30, 7004-7007.	2.2	7
134	Brush Theory of Tethered Chains with a Charged Group at the Free End. Macromolecules, 1997, 30, 584-589.	2.2	15
135	Modeling the Interactions between Polymer-Coated Surfaces. Journal of Physical Chemistry B, 1997, 101, 10614-10624.	1.2	53
136	Theory of polymer chains tethered at interfaces. Progress in Surface Science, 1997, 55, 181-269.	3.8	60
137	The effect of tethered polymers on the conformation of a lipid membrane. Macromolecular Theory and Simulations, 1997, 6, 1169-1176.	0.6	12
138	Self-Assembly of Tethered Diblocks in Selective Solvents. Macromolecules, 1996, 29, 8254-8259.	2.2	90
139	A "Jumping Micelle―Phase Transition. Macromolecules, 1996, 29, 7637-7640.	2.2	25
140	Theory of the Collapse of the Polyelectrolyte Brush. Macromolecules, 1996, 29, 8260-8270.	2.2	71
141	Polyelectrolytes Grafted to Curved Surfaces. Macromolecules, 1996, 29, 2618-2626.	2.2	75
142	Designing Patterned Surfaces by Grafting Y-Shaped Copolymers. Macromolecules, 1996, 29, 2667-2673.	2.2	115
143	Grafted macromolecules with adsorbing ends. Journal of Chemical Physics, 1996, 105, 2119-2126.	1.2	13
144	The behavior of grafted polymers in restricted geometries under poor solvent conditions. Journal of Chemical Physics, 1996, 104, 727-735.	1.2	5

#	Article	IF	CITATIONS
145	Forming Patterned Films with Tethered Diblock Copolymers. Macromolecules, 1996, 29, 6338-6348.	2.2	123
146	Scaling Theory of Planar Brushes Formed by Branched Polymers. Macromolecules, 1995, 28, 1008-1015.	2.2	86
147	Inhomogeneous Structure of Collapsed Polymer Brushes Under Deformation. Macromolecules, 1995, 28, 8612-8620.	2.2	97
148	Analytical Self-Consistent-Field Model of Weak Polyacid Brushes. Macromolecules, 1995, 28, 3562-3569.	2.2	190
149	Theory of Ionizable Polymer Brushes. Macromolecules, 1995, 28, 1491-1499.	2.2	312
150	Stretching of Polyelectrolyte Coils and Globules in an Elongational Flow. Macromolecules, 1995, 28, 7180-7187.	2.2	17
151	The theory of a polyelectrolyte brush immersed in a solution of mobile polyelectrolyte. Journal of Physics Condensed Matter, 1994, 6, A317-A322.	0.7	2
152	Theory of planar polyelectrolyte brush immersed in solution of asymmetric salt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 86, 11-24.	2.3	6
153	Effect of Free Polymer on the Structure of a Polymer Brush and Interaction between Two Polymer Brushes. Macromolecules, 1994, 27, 3238-3248.	2.2	130
154	Diagram of the States of a Grafted Polyelectrolyte Layer. Macromolecules, 1994, 27, 4795-4803.	2.2	222
155	Charged Polymeric Brushes: Structure and Scaling Relations. Macromolecules, 1994, 27, 3249-3261.	2.2	240
156	Polymer brushes at curved surfaces. Macromolecules, 1993, 26, 7214-7224.	2.2	257
157	Charged block copolymer mesogels. Macromolecules, 1993, 26, 6273-6283.	2.2	12
158	Structure of a bidisperse polymer brush: Monte Carlo simulation and self-consistent field results. Macromolecules, 1992, 25, 5201-5207.	2.2	60
159	Lamellar mesogels and mesophases: a self-consistent-field theory. Macromolecules, 1992, 25, 5730-5741.	2.2	78
160	Structure of dense polymer layers between end-grafting and end-adsorbing walls. Macromolecules, 1992, 25, 754-758.	2.2	18
161	Self-consistent field theories for polymer brushes: lattice calculations and an asymptotic analytical description. Macromolecules, 1992, 25, 2657-2665.	2.2	164
162	Theory of supermolecular structures in polydisperse block copolymers: 5. New double cylindrical structure in binary mixture of cylinder-forming diblock copolymers. Polymer, 1992, 33, 2750-2756.	1.8	18

EKATERINA B ZHULINA

#	Article	IF	CITATIONS
163	Theory of supermolecular structures in polydisperse block copolymers: 4. Cylindrical domains in binary mixtures of diblock copolymers and cylinder-lamellae transition. Polymer, 1992, 33, 343-351.	1.8	31
164	Theory of supermolecular structures in polydisperse block copolymers: 3. Cylindrical layers of bidisperse chains. Polymer, 1992, 33, 332-342.	1.8	29
165	Theory of a planar grafted chain layer immersed in a solution of mobile polymer. Macromolecules, 1991, 24, 4679-4690.	2.2	72
166	Coil-globule type transitions in polymers. 1. Collapse of layers of grafted polymer chains. Macromolecules, 1991, 24, 140-149.	2.2	380
167	Stretching polymer brushes in poor solvents. Macromolecules, 1991, 24, 5393-5397.	2.2	80
168	Theory of supermolecular structures in polydisperse block copolymers: 2. Lamellar superstructure consisting of two-block copolymers. Polymer, 1991, 32, 1299-1308.	1.8	32
169	Structure and stabilizing properties of grafted polymer layers in a polymer medium. Journal of Colloid and Interface Science, 1991, 144, 507-520.	5.0	14
170	On the Deformation Behaviour of Collapsed Polymers. Europhysics Letters, 1991, 15, 417-421.	0.7	156
171	Mesogels. Europhysics Letters, 1991, 16, 337-341.	0.7	39
172	Computer simulation of polymers in thin layers. II. Structure of polymer melt layers consisting of endâ€ŧoâ€wall grafted chains. Journal of Chemical Physics, 1991, 95, 4691-4697.	1.2	26
173	Theory of supermolecular structures of polydisperse block copolymers: 1. Planar layers of grafted chains. Polymer, 1990, 31, 2185-2196.	1.8	104
174	Scaling theory of supermolecular structures in block copolymer-solvent systems: 3. New bitetrahedral superstructure of star-branched block copolymers. Polymer, 1990, 31, 2197-2200.	1.8	5
175	Scaling theory of supermolecular structures in block copolymer-solvent systems: 2. Supercrystalline structures. Polymer, 1990, 31, 1312-1320.	1.8	38
176	Theory of steric stabilization of colloid dispersions by grafted polymers. Journal of Colloid and Interface Science, 1990, 137, 495-511.	5.0	329
177	Scaling theory of supermolecular structures in block copolymer-solvent systems: 1. Model of micellar structures. Polymer, 1989, 30, 170-177.	1.8	116
178	Temperature-concentration diagram for a solution of star-branched macromolecules. Polymer, 1986, 27, 1078-1086.	1.8	77
179	Conformations of star-branched macromolecules. Polymer, 1984, 25, 1453-1461.	1.8	228
180	Theory of adsorption of macromolecules in cylindrical pores and at surfaces of cylindrical shape. Polymer, 1982, 23, 1133-1142.	1.8	37

0

#	Article	IF	CITATIONS
181	Theory of Y―and Combâ€Shaped Polymer Brushes: The Parabolic Potential Framework. Macromolecular Theory and Simulations, 0, , 2100037.	0.6	0

182 Responsive Polymer Brushes: Theoretical Outlook. , 0, , 6986-6998.