Karol KyzioÅ,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/198270/publications.pdf

Version: 2024-02-01

840776 839539 38 422 11 18 citations h-index g-index papers 39 39 39 515 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure, characterization and cytotoxicity study on plasma surface modified Ti–6Al–4V and γ-TiAl alloys. Chemical Engineering Journal, 2014, 240, 516-526.	12.7	44
2	Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chemical Engineering Journal, 2020, 385, 123888.	12.7	40
3	Plasma Assisted Chemical Vapour Deposition – Technological Design Of Functional Coatings. Archives of Metallurgy and Materials, 2015, 60, 909-914.	0.6	24
4	Towards prevention of biofilm formation: Ti6Al7Nb modified with nanocomposite layers of chitosan and Ag/Au nanoparticles. Applied Surface Science, 2021, 557, 149795.	6.1	22
5	Oxidation resistance of valve steels covered with thin SiC coatings, obtained by RF CVD. Corrosion Science, 2018, 145, 16-25.	6.6	20
6	A role of parameters in RF PA CVD technology of a-C:N:H layers. Vacuum, 2008, 82, 998-1002.	3.5	19
7	Optimization of the Heat Treatment and Tribological Properties of 2024 and 7075 Aluminium Alloys. Archives of Metallurgy and Materials, 2013, 58, 535-540.	0.6	18
8	Surface Functionalization With Biopolymers via Plasma-Assisted Surface Grafting and Plasma-Induced Graft Polymerization—Materials for Biomedical Applications. , 2018, , 115-151.		16
9	Formation of SixNy(H) and C:N:H layers by Plasma-Assisted Chemical Vapor Deposition method. Thin Solid Films, 2016, 600, 162-168.	1.8	14
10	Influence of gas mixture during N+ ion modification under plasma conditions on surface structure and mechanical properties of Al–Zn alloys. Surface and Coatings Technology, 2015, 278, 30-37.	4.8	13
11	Nanoindentation Study of Intermetallic Particles in 2024 Aluminium Alloy. Coatings, 2020, 10, 846.	2.6	13
12	Wear resistant carbon coatings deposited at room temperature byÂpulsed laser deposition method on 7075 aluminum alloy. Vacuum, 2013, 97, 20-25.	3.5	12
13	The influence of chemical groups on the mechanical properties of SiCNH coatings deposited on 7075 aluminum alloy. Thin Solid Films, 2013, 534, 15-21.	1.8	12
14	Chemical composition and selected mechanical properties of Alâ€"Zn alloy modified in plasma conditions by RF CVD. Applied Surface Science, 2014, 311, 33-39.	6.1	11
15	The Effect Of Two-Stage Age Hardening Treatment Combined With Shot Peening On Stress Distribution In The Surface Layer Of 7075 Aluminum Alloy. Archives of Metallurgy and Materials, 2015, 60, 1993-1998.	0.6	11
16	Physicochemical and Biological Activity Analysis of Low-Density Polyethylene Substrate Modified by Multi-Layer Coatings Based on DLC Structures, Obtained Using RF CVD Method. Coatings, 2018, 8, 135.	2.6	11
17	Stability of a-C:N:H Layers Deposited by RF Plasma Enhanced CVD. Solid State Phenomena, 0, 147-149, 738-743.	0.3	9
18	Influence of Nickel on the Oxidation Resistance at High Temperatures of Thin Chromium Coatings. Oxidation of Metals, 2019, 91, 625-640.	2.1	9

#	Article	IF	CITATIONS
19	Influence of plasmochemical modification of Al–Cu–Mg alloys on surface structure and functional properties. Vacuum, 2014, 105, 52-58.	3.5	8
20	Effect of core/shell precipitations on fatigue strength of 2024-T616 alloy. International Journal of Fatigue, 2019, 127, 165-174.	5.7	8
21	Deposition, morphology and functional properties of layers based on DLC:Si and DLC:N on polyurethane. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	7
22	Impact of chitosan/noble metals-based coatings on the plasmochemically activated surface of NiTi alloy. Materials Chemistry and Physics, 2020, 248, 122931.	4.0	7
23	Dual-purpose surface functionalization of Ti-6Al-7Nb involving oxygen plasma treatment and Si-DLC or chitosan-based coatings. Materials Science and Engineering C, 2021, 121, 111848.	7.3	7
24	Chromium-based oxidation-resistant coatings for the protection of engine valves in automotive vehicles. Materiali in Tehnologije, 2017, 51, 603-607.	0.5	7
25	Electrostatic self-assembly approach in the deposition of bio-functional chitosan-based layers enriched with caffeic acid on Ti-6Al-7Nb alloys by alternate immersion., 2022, 136, 212791.		7
26	Surfaces Modification of Al-Cu Alloys by Plasma-Assisted CVD. Solid State Phenomena, 0, 199, 496-501.	0.3	6
27	Plasmochemical modification of aluminum-zinc alloys using NH 3 -Ar atmosphere with anti-wear coatings deposition. Materials Chemistry and Physics, 2017, 189, 198-206.	4.0	6
28	PVD fabrication of lead film electrodes and their catalytic adsorptive stripping voltammetric performance in the presence of oxidants. Electrochemistry Communications, 2018, 94, 49-54.	4.7	6
29	Microstructure and Mechanical Properties of Annealed WC/C PECVD Coatings Deposited Using Hexacarbonyl of W with Different Gases. Materials, 2020, 13, 3576.	2.9	4
30	Influence of chemical composition of Ti/TiC/a-C:H coatings deposited on 7075 aluminum alloy on their selected mechanical properties. Surface and Coatings Technology, 2015, 261, 304-310.	4.8	3
31	Influence of the Chemical Composition of Al/AlC/a-C:H Coatings on the Mechanical Properties of Magnesium Alloy AZ31. Metal Science and Heat Treatment, 2018, 60, 443-449.	0.6	3
32	The Influence of the Size and Oxidation Degree of Graphene Flakes on the Process of Creating 3D Structures during Its Cross-Linking. Materials, 2020, 13, 681.	2.9	3
33	Investigating Fatigue Strength of Vacuum Carburized 17CrNi6-6 Steel Using a Resonance High Frequency Method. Solid State Phenomena, 0, 225, 45-52.	0.3	2
34	Modification of the high-temperature performance of thin chromium coatings deposited on valve steels. Materials at High Temperatures, 2020, 37, 145-154.	1.0	2
35	Functionalization Mechanism of Reduced Graphene Oxide Flakes with BF3·THF and Its Influence on Interaction with Li+ Ions in Lithium-Ion Batteries. Materials, 2021, 14, 679.	2.9	2
36	MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ANNEALED WC/C COATINGS DEPOSITED WITH DIFFERENT GAS MIXTURES IN AN RFMS PROCESS. Ceramics - Silikaty, 2019, , 213-222.	0.3	2

#	Article	IF	CITATIONS
37	The Effect of Annealing Temperatures on Selected Properties of WC/C Coatings, Deposited Using Hexacarbonyl Wolfram in an N2-SiH4 Atmosphere. Materials, 2021, 14, 4658.	2.9	1
38	Plasmochemical Modification of Crofer 22APU for Intermediate-Temperature Solid Oxide Fuel Cell Interconnects Using RF PA CVD Method. Materials, 2022, 15, 4081.	2.9	1