Tobias Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981983/publications.pdf

Version: 2024-02-01

87723 4,961 98 38 citations h-index papers

g-index 102 102 102 5287 docs citations times ranked citing authors all docs

98622

67

#	Article	IF	CITATIONS
1	Increased expression of the ATPâ€gated P2X7 receptor reduces responsiveness to antiâ€convulsants during status epilepticus in mice. British Journal of Pharmacology, 2022, 179, 2986-3006.	2.7	20
2	Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. International Journal of Molecular Sciences, 2022, 23, 2380.	1.8	10
3	Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases. International Journal of Molecular Sciences, 2022, 23, 232.	1.8	39
4	Analyzing the Role of the P2X7 Receptor in Epilepsy. Methods in Molecular Biology, 2022, , 367-387.	0.4	4
5	Pembrolizumab plus axitinib and nivolumab plus ipilimumab as first-line treatments of advanced intermediate- or poor-risk renal-cell carcinoma: a number needed to treat analysis from the Brazilian private perspective. Journal of Medical Economics, 2021, 24, 291-298.	1.0	4
6	Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia, 2021, 62, 817-828.	2.6	21
7	Functional P2X ₇ Receptors in the Auditory Nerve of Hearing Rodents Localize Exclusively to Peripheral Glia. Journal of Neuroscience, 2021, 41, 2615-2629.	1.7	6
8	Editorial: P2X7 as Common Therapeutic Target in Brain Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 656011.	1.4	5
9	Progressive Mitochondrial SOD1G93A Accumulation Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 Down-Regulation in a Mouse Model of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 8194.	1.8	10
10	Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. Journal of Inflammation Research, 2021, Volume 14, 3367-3392.	1.6	16
11	ATP and adenosineâ€"Two players in the control of seizures and epilepsy development. Progress in Neurobiology, 2021, 204, 102105.	2.8	47
12	Circulating P2X7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy. Cells, 2021, 10, 2444.	1.8	23
13	Novel Point-of-Care Diagnostic Method for Neonatal Encephalopathy Using Purine Nucleosides. Frontiers in Molecular Neuroscience, 2021, 14, 732199.	1.4	4
14	High concordance between hippocampal transcriptome of the mouse intraâ€amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia, 2020, 61, 2795-2810.	2.6	17
15	P2X7 Receptor-Dependent microRNA Expression Profile in the Brain Following Status Epilepticus in Mice. Frontiers in Molecular Neuroscience, 2020, 13, 127.	1.4	6
16	Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular Brain, 2020, 13, 114.	1.3	18
17	Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neuroscience Bulletin, 2020, 36, 1242-1258.	1.5	32
18	Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Scientific Reports, 2020, 10, 19876.	1.6	11

#	Article	IF	CITATIONS
19	Neonatal Seizures and Purinergic Signalling. International Journal of Molecular Sciences, 2020, 21, 7832.	1.8	5
20	Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain, 2020, 143, 2139-2153.	3.7	11
21	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	3.3	41
22	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	2.1	35
23	Using Amperometric, Enzyme-Based Biosensors for Performing Longitudinal Measurements of Extracellular Adenosine 5-Triphosphate in the Mouse. Methods in Molecular Biology, 2020, 2041, 197-207.	0.4	0
24	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. Scientific Reports, 2019, 9, 15437.	1.6	63
25	ATP release during seizures – A critical evaluation of the evidence. Brain Research Bulletin, 2019, 151, 65-73.	1.4	45
26	Purinergic signaling as a target for emerging neurotherapeutics. Brain Research Bulletin, 2019, 151, 1-2.	1.4	2
27	Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.	1.7	28
28	Context-Specific Switch from Anti- to Pro-epileptogenic Function of the P2Y ₁ Receptor in Experimental Epilepsy. Journal of Neuroscience, 2019, 39, 5377-5392.	1.7	37
29	Elevated Plasma microRNA-206 Levels Predict Cognitive Decline and Progression to Dementia from Mild Cognitive Impairment. Biomolecules, 2019, 9, 734.	1.8	41
30	Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Frontiers in Aging Neuroscience, 2019, 11, 308.	1.7	29
31	Regulation of P2X7 receptor expression and function in the brain. Brain Research Bulletin, 2019, 151, 153-163.	1.4	54
32	Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y1 Antagonism in Mice. Frontiers in Pharmacology, 2019, 10, 1558.	1.6	16
33	Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death and Disease, 2018, 8, e2556-e2556.	2.7	2
34	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	1.4	26
35	Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	2.7	32
36	Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Frontiers in Pharmacology, 2018, 9, 170.	1.6	14

#	Article	IF	CITATIONS
37	The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Frontiers in Pharmacology, 2018, 9, 193.	1.6	36
38	Detecting Circulating MicroRNAs as Biomarkers in Alzheimer's Disease. Methods in Molecular Biology, 2018, 1779, 471-484.	0.4	4
39	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	2.8	128
40	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
41	RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Scientific Reports, 2017, 7, 41517.	1.6	16
42	Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology, 2017, 116, 351-363.	2.0	44
43	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	4.4	23
44	MicroRNAs in Neurodegenerative Diseases. International Review of Cell and Molecular Biology, 2017, 334, 309-343.	1.6	151
45	Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drugâ€refractory epilepsy. Epilepsia, 2017, 58, 1603-1614.	2.6	51
46	A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 255-266.	1.9	31
47	The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy. Frontiers in Neuroscience, 2017, 11, 21.	1.4	83
48	Targeting the proteasome in epilepsy. Oncotarget, 2017, 8, 45042-45043.	0.8	3
49	Tubby-like protein 1 (Tulp1) is a target of microRNA-134 and is down-regulated in experimental epilepsy. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 178-187.	0.8	6
50	Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Human Molecular Genetics, 2016, 25, 4143-4156.	1.4	54
51	Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. Journal of Neuroscience, 2016, 36, 4564-4578.	1.7	47
52	MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Reports, 2016, 17, 37-45.	2.9	71
53	Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus. Epilepsy and Behavior, 2016, 64, 186-194.	0.9	6
54	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	1.7	127

#	Article	IF	Citations
55	Purinergic signaling-induced neuroinflammation and status epilepticus. Expert Review of Neurotherapeutics, 2016, 16, 735-737.	1.4	1
56	ATPergic signalling during seizures and epilepsy. Neuropharmacology, 2016, 104, 140-153.	2.0	86
57	Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS ONE, 2016, 11, e0156468.	1.1	57
58	microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports, 2015, 5, 17486.	1.6	98
59	Bax Regulates Neuronal Ca ²⁺ Homeostasis. Journal of Neuroscience, 2015, 35, 1706-1722.	1.7	52
60	Overexpression of 14-3-3ζ Increases Brain Levels of C/EBP Homologous Protein CHOP. Journal of Molecular Neuroscience, 2015, 56, 255-262.	1.1	4
61	Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. Brain Research, 2015, 1611, 84-92.	1.1	3
62	P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy and Behavior, 2015, 49, 8-12.	0.9	42
63	Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Structure and Function, 2015, 220, 2387-2399.	1.2	101
64	P2X7 Receptor Inhibition Interrupts the Progression of Seizures in Immature Rats and Reduces Hippocampal Damage. CNS Neuroscience and Therapeutics, 2014, 20, 556-564.	1.9	58
65	De-repression of myelin-regulating gene expression after status epilepticus in mice lacking the C/EBP homologous protein CHOP. International Journal of Physiology, Pathophysiology and Pharmacology, 2014, 6, 185-98.	0.8	4
66	Mitochondrial localization of the Forkhead box class O transcription factor <scp>FOXO</scp> 3a in brain. Journal of Neurochemistry, 2013, 124, 749-756.	2.1	21
67	Spatio-temporally restricted blood–brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Research, 2013, 103, 167-179.	0.8	35
68	CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures. Brain, 2013, 136, 577-592.	3.7	95
69	Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain, 2013, 136, 1161-1176.	3.7	49
70	Increased neocortical expression of the <scp>P</scp> 2X7 receptor after status epilepticus and anticonvulsant effect of <scp>P</scp> 2X7 receptor antagonist <scp>A</scp> â€438079. Epilepsia, 2013, 54, 1551-1561.	2.6	130
71	Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Frontiers in Cellular Neuroscience, 2013, 7, 110.	1.8	54
72	P2X receptors as targets for the treatment of status epilepticus. Frontiers in Cellular Neuroscience, 2013, 7, 237.	1.8	45

#	Article	IF	Citations
73	Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo. PLoS ONE, 2013, 8, e54491.	1.1	44
74	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	1.6	16
75	Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 2012, 18, 1087-1094.	15.2	423
76	Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB Journal, 2012, 26, 1616-1628.	0.2	173
77	Bi-lateral changes to hippocampal cholesterol levels during epileptogenesis and in chronic epilepsy following focal-onset status epilepticus in mice. Brain Research, 2012, 1480, 81-90.	1.1	23
78	Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis. PLoS ONE, 2012, 7, e35921.	1.1	121
79	P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 174-87.	0.8	36
80	miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132. American Journal of Pathology, 2011, 179, 2519-2532.	1.9	194
81	Bclâ€2 homology domain 3â€only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition ⟨i⟩inâ€∫vivo⟨ i⟩. European Journal of Neuroscience, 2011, 33, 401-408.	1.2	19
82	<i>In vivo</i> Contributions of BH3-Only Proteins to Neuronal Death Following Seizures, Ischemia, and Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1196-1210.	2.4	61
83	Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochemical Society Transactions, 2010, 38, 977-980.	1.6	24
84	BH3â€only protein Bid is dispensable for seizureâ€induced neuronal death and the associated nuclear accumulation of apoptosisâ€inducing factor. Journal of Neurochemistry, 2010, 115, 92-101.	2.1	24
85	Reduced hippocampal damage and epileptic seizures after <i>status epilepticus</i> in mice lacking proapoptotic Puma. FASEB Journal, 2010, 24, 853-861.	0.2	65
86	Tau Kinase I Overexpression Induces Dentate Gyrus Degeneration. Neurodegenerative Diseases, 2010, 7, 13-15.	0.8	5
87	Effects of transient focal cerebral ischemia in mice deficient in puma. Neuroscience Letters, 2009, 451, 237-240.	1.0	16
88	Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis?. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 1, 97-115.	0.8	54
89	NMDA receptorâ€mediated excitotoxic neuronal apoptosis <i>in vitro</i> and <i>in vivo</i> occurs in an ER stress and PUMA independent manner. Journal of Neurochemistry, 2008, 105, 891-903.	2.1	47
90	Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Research, 2008, 1213, 140-151.	1.1	137

TOBIAS ENGEL

#	Article	IF	CITATION
91	A mouse model to study tau pathology related with tau phosphorylation and assembly. Journal of the Neurological Sciences, 2007, 257, 250-254.	0.3	7
92	Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Research, 2007, 77, 151-156.	0.8	34
93	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	1.2	300
94	Cooexpression of FTDP-17 tau and GSK- $3\hat{i}^2$ in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging, 2006, 27, 1258-1268.	1.5	105
95	Chronic lithium administration to FTDP-17 tau and GSK-3? overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 2006, 99, 1445-1455.	2.1	197
96	Full Reversal of Alzheimer's Disease-Like Phenotype in a Mouse Model with Conditional Overexpression of Glycogen Synthase Kinase-3. Journal of Neuroscience, 2006, 26, 5083-5090.	1.7	234
97	Characterization of Alzheimer paired helical filaments by electron microscopy. Microscopy Research and Technique, 2005, 67, 121-125.	1.2	5
98	Animal Models with Modified Expression of GSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies. , 0, , 203-219.		0