
Tobias Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981983/publications.pdf Version: 2024-02-01

TORIAS ENCEL

#	Article	IF	CITATIONS
1	Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 2012, 18, 1087-1094.	15.2	423
2	Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. European Journal of Neuroscience, 2007, 25, 81-86.	1.2	300
3	Full Reversal of Alzheimer's Disease-Like Phenotype in a Mouse Model with Conditional Overexpression of Glycogen Synthase Kinase-3. Journal of Neuroscience, 2006, 26, 5083-5090.	1.7	234
4	Chronic lithium administration to FTDP-17 tau and GSK-3? overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry, 2006, 99, 1445-1455.	2.1	197
5	miRNA Expression Profile after Status Epilepticus and Hippocampal Neuroprotection by Targeting miR-132. American Journal of Pathology, 2011, 179, 2519-2532.	1.9	194
6	Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB Journal, 2012, 26, 1616-1628.	0.2	173
7	MicroRNAs in Neurodegenerative Diseases. International Review of Cell and Molecular Biology, 2017, 334, 309-343.	1.6	151
8	Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice. Brain Research, 2008, 1213, 140-151.	1.1	137
9	Increased neocortical expression of the <scp>P</scp> 2X7 receptor after status epilepticus and anticonvulsant effect of <scp>P</scp> 2X7 receptor antagonist <scp>A</scp> â€438079. Epilepsia, 2013, 54, 1551-1561.	2.6	130
10	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	2.8	128
11	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	1.7	127
12	Reduced Mature MicroRNA Levels in Association with Dicer Loss in Human Temporal Lobe Epilepsy with Hippocampal Sclerosis. PLoS ONE, 2012, 7, e35921.	1.1	121
13	Cooexpression of FTDP-17 tau and GSK-3Î ² in transgenic mice induce tau polymerization and neurodegeneration. Neurobiology of Aging, 2006, 27, 1258-1268.	1.5	105
14	Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Structure and Function, 2015, 220, 2387-2399.	1.2	101
15	microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus. Scientific Reports, 2015, 5, 17486.	1.6	98
16	CHOP regulates the p53–MDM2 axis and is required for neuronal survival after seizures. Brain, 2013, 136, 577-592.	3.7	95
17	ATPergic signalling during seizures and epilepsy. Neuropharmacology, 2016, 104, 140-153.	2.0	86
18	The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy. Frontiers in Neuroscience, 2017, 11, 21.	1.4	83

#	Article	IF	CITATIONS
19	MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Reports, 2016, 17, 37-45.	2.9	71
20	Reduced hippocampal damage and epileptic seizures after <i>status epilepticus</i> in mice lacking proapoptotic Puma. FASEB Journal, 2010, 24, 853-861.	0.2	65
21	Proteins and microRNAs are differentially expressed in tear fluid from patients with Alzheimer's disease. Scientific Reports, 2019, 9, 15437.	1.6	63
22	<i>In vivo</i> Contributions of BH3-Only Proteins to Neuronal Death Following Seizures, Ischemia, and Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1196-1210.	2.4	61
23	P2X7 Receptor Inhibition Interrupts the Progression of Seizures in Immature Rats and Reduces Hippocampal Damage. CNS Neuroscience and Therapeutics, 2014, 20, 556-564.	1.9	58
24	Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models. PLoS ONE, 2016, 11, e0156468.	1.1	57
25	Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Frontiers in Cellular Neuroscience, 2013, 7, 110.	1.8	54
26	Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Human Molecular Genetics, 2016, 25, 4143-4156.	1.4	54
27	Regulation of P2X7 receptor expression and function in the brain. Brain Research Bulletin, 2019, 151, 153-163.	1.4	54
28	Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis?. International Journal of Physiology, Pathophysiology and Pharmacology, 2009, 1, 97-115.	0.8	54
29	Bax Regulates Neuronal Ca ²⁺ Homeostasis. Journal of Neuroscience, 2015, 35, 1706-1722.	1.7	52
30	Expression and function of the metabotropic purinergic P2Y receptor family in experimental seizure models and patients with drugâ€refractory epilepsy. Epilepsia, 2017, 58, 1603-1614.	2.6	51
31	Protective neuronal induction of ATF5 in endoplasmic reticulum stress induced by status epilepticus. Brain, 2013, 136, 1161-1176.	3.7	49
32	NMDA receptorâ€mediated excitotoxic neuronal apoptosis <i>in vitro</i> and <i>in vivo</i> occurs in an ER stress and PUMA independent manner. Journal of Neurochemistry, 2008, 105, 891-903.	2.1	47
33	Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. Journal of Neuroscience, 2016, 36, 4564-4578.	1.7	47
34	ATP and adenosine—Two players in the control of seizures and epilepsy development. Progress in Neurobiology, 2021, 204, 102105.	2.8	47
35	P2X receptors as targets for the treatment of status epilepticus. Frontiers in Cellular Neuroscience, 2013, 7, 237.	1.8	45
36	ATP release during seizures – A critical evaluation of the evidence. Brain Research Bulletin, 2019, 151, 65-73.	1.4	45

#	Article	IF	CITATIONS
37	Effects of P2X7 receptor antagonists on hypoxia-induced neonatal seizures in mice. Neuropharmacology, 2017, 116, 351-363.	2.0	44
38	Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo. PLoS ONE, 2013, 8, e54491.	1.1	44
39	P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy and Behavior, 2015, 49, 8-12.	0.9	42
40	Elevated Plasma microRNA-206 Levels Predict Cognitive Decline and Progression to Dementia from Mild Cognitive Impairment. Biomolecules, 2019, 9, 734.	1.8	41
41	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	3.3	41
42	Inherent P2X7 Receptors Regulate Macrophage Functions during Inflammatory Diseases. International Journal of Molecular Sciences, 2022, 23, 232.	1.8	39
43	Context-Specific Switch from Anti- to Pro-epileptogenic Function of the P2Y ₁ Receptor in Experimental Epilepsy. Journal of Neuroscience, 2019, 39, 5377-5392.	1.7	37
44	The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Frontiers in Pharmacology, 2018, 9, 193.	1.6	36
45	P2X7 receptor in epilepsy; role in pathophysiology and potential targeting for seizure control. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 174-87.	0.8	36
46	Spatio-temporally restricted blood–brain barrier disruption after intra-amygdala kainic acid-induced status epilepticus in mice. Epilepsy Research, 2013, 103, 167-179.	0.8	35
47	Genome-wide microRNA profiling of plasma from three different animal models identifies biomarkers of temporal lobe epilepsy. Neurobiology of Disease, 2020, 144, 105048.	2.1	35
48	Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Research, 2007, 77, 151-156.	0.8	34
49	Bi-directional genetic modulation of CSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus. Cell Death and Disease, 2018, 9, 969.	2.7	32
50	Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neuroscience Bulletin, 2020, 36, 1242-1258.	1.5	32
51	A calcium-sensitive feed-forward loop regulating the expression of the ATP-gated purinergic P2X7 receptor via specificity protein 1 and microRNA-22. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 255-266.	1.9	31
52	Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Frontiers in Aging Neuroscience, 2019, 11, 308.	1.7	29
53	Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.	1.7	28
54	MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Frontiers in Molecular Neuroscience, 2018, 11, 442.	1.4	26

#	Article	IF	CITATIONS
55	Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochemical Society Transactions, 2010, 38, 977-980.	1.6	24
56	BH3â€only protein Bid is dispensable for seizureâ€induced neuronal death and the associated nuclear accumulation of apoptosisâ€inducing factor. Journal of Neurochemistry, 2010, 115, 92-101.	2.1	24
57	Bi-lateral changes to hippocampal cholesterol levels during epileptogenesis and in chronic epilepsy following focal-onset status epilepticus in mice. Brain Research, 2012, 1480, 81-90.	1.1	23
58	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	4.4	23
59	Circulating P2X7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy. Cells, 2021, 10, 2444.	1.8	23
60	Mitochondrial localization of the Forkhead box class O transcription factor <scp>FOXO</scp> 3a in brain. Journal of Neurochemistry, 2013, 124, 749-756.	2.1	21
61	Elevated blood purine levels as a biomarker of seizures and epilepsy. Epilepsia, 2021, 62, 817-828.	2.6	21
62	Increased expression of the ATPâ€gated P2X7 receptor reduces responsiveness to anti onvulsants during status epilepticus in mice. British Journal of Pharmacology, 2022, 179, 2986-3006.	2.7	20
63	Bclâ€2 homology domain 3â€only proteins Puma and Bim mediate the vulnerability of CA1 hippocampal neurons to proteasome inhibition <i>inâ€∫vivo</i> . European Journal of Neuroscience, 2011, 33, 401-408.	1.2	19
64	Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular Brain, 2020, 13, 114.	1.3	18
65	High concordance between hippocampal transcriptome of the mouse intraâ€amygdala kainic acid model and human temporal lobe epilepsy. Epilepsia, 2020, 61, 2795-2810.	2.6	17
66	Effects of transient focal cerebral ischemia in mice deficient in puma. Neuroscience Letters, 2009, 451, 237-240.	1.0	16
67	Looking for novel functions of tau. Biochemical Society Transactions, 2012, 40, 653-655.	1.6	16
68	RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Scientific Reports, 2017, 7, 41517.	1.6	16
69	Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y1 Antagonism in Mice. Frontiers in Pharmacology, 2019, 10, 1558.	1.6	16
70	Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. Journal of Inflammation Research, 2021, Volume 14, 3367-3392.	1.6	16
71	Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels. Frontiers in Pharmacology, 2018, 9, 170.	1.6	14
72	Deviant reporter expression and P2X4 passenger gene overexpression in the soluble EGFP BAC transgenic P2X7 reporter mouse model. Scientific Reports, 2020, 10, 19876.	1.6	11

#	Article	IF	CITATIONS
73	Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain, 2020, 143, 2139-2153.	3.7	11
74	Progressive Mitochondrial SOD1G93A Accumulation Causes Severe Structural, Metabolic and Functional Aberrations through OPA1 Down-Regulation in a Mouse Model of Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2021, 22, 8194.	1.8	10
75	Beyond Seizure Control: Treating Comorbidities in Epilepsy via Targeting of the P2X7 Receptor. International Journal of Molecular Sciences, 2022, 23, 2380.	1.8	10
76	A mouse model to study tau pathology related with tau phosphorylation and assembly. Journal of the Neurological Sciences, 2007, 257, 250-254.	0.3	7
77	Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus. Epilepsy and Behavior, 2016, 64, 186-194.	0.9	6
78	P2X7 Receptor-Dependent microRNA Expression Profile in the Brain Following Status Epilepticus in Mice. Frontiers in Molecular Neuroscience, 2020, 13, 127.	1.4	6
79	Functional P2X ₇ Receptors in the Auditory Nerve of Hearing Rodents Localize Exclusively to Peripheral Glia. Journal of Neuroscience, 2021, 41, 2615-2629.	1.7	6
80	Tubby-like protein 1 (Tulp1) is a target of microRNA-134 and is down-regulated in experimental epilepsy. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 178-187.	0.8	6
81	Characterization of Alzheimer paired helical filaments by electron microscopy. Microscopy Research and Technique, 2005, 67, 121-125.	1.2	5
82	Tau Kinase I Overexpression Induces Dentate Gyrus Degeneration. Neurodegenerative Diseases, 2010, 7, 13-15.	0.8	5
83	Neonatal Seizures and Purinergic Signalling. International Journal of Molecular Sciences, 2020, 21, 7832.	1.8	5
84	Editorial: P2X7 as Common Therapeutic Target in Brain Diseases. Frontiers in Molecular Neuroscience, 2021, 14, 656011.	1.4	5
85	Overexpression of 14-3-3ζ Increases Brain Levels of C/EBP Homologous Protein CHOP. Journal of Molecular Neuroscience, 2015, 56, 255-262.	1.1	4
86	Detecting Circulating MicroRNAs as Biomarkers in Alzheimer's Disease. Methods in Molecular Biology, 2018, 1779, 471-484.	0.4	4
87	Pembrolizumab plus axitinib and nivolumab plus ipilimumab as first-line treatments of advanced intermediate- or poor-risk renal-cell carcinoma: a number needed to treat analysis from the Brazilian private perspective. Journal of Medical Economics, 2021, 24, 291-298.	1.0	4
88	Novel Point-of-Care Diagnostic Method for Neonatal Encephalopathy Using Purine Nucleosides. Frontiers in Molecular Neuroscience, 2021, 14, 732199.	1.4	4
89	De-repression of myelin-regulating gene expression after status epilepticus in mice lacking the C/EBP homologous protein CHOP. International Journal of Physiology, Pathophysiology and Pharmacology, 2014, 6, 185-98.	0.8	4
90	Analyzing the Role of the P2X7 Receptor in Epilepsy. Methods in Molecular Biology, 2022, , 367-387.	0.4	4

#	Article	IF	CITATIONS
91	Excitotoxicity induced by kainic acid provokes glycogen synthase kinase-3 truncation in the hippocampus. Brain Research, 2015, 1611, 84-92.	1.1	3
92	Targeting the proteasome in epilepsy. Oncotarget, 2017, 8, 45042-45043.	0.8	3
93	Deletion of the BH3-only protein Noxa alters electrographic seizures but does not protect against hippocampal damage after status epilepticus in mice. Cell Death and Disease, 2018, 8, e2556-e2556.	2.7	2
94	Purinergic signaling as a target for emerging neurotherapeutics. Brain Research Bulletin, 2019, 151, 1-2.	1.4	2
95	Profiling of Argonaute-2-loaded microRNAs in a mouse model of frontotemporal dementia with parkinsonism-17. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 172-183.	0.8	2
96	Purinergic signaling-induced neuroinflammation and status epilepticus. Expert Review of Neurotherapeutics, 2016, 16, 735-737.	1.4	1
97	Animal Models with Modified Expression of GSK-3 for the Study of Its Physiology and of Its Implications in Human Pathologies. , 0, , 203-219.		Ο
98	Using Amperometric, Enzyme-Based Biosensors for Performing Longitudinal Measurements of Extracellular Adenosine 5-Triphosphate in the Mouse. Methods in Molecular Biology, 2020, 2041, 197-207.	0.4	0