## James C Stegen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981367/publications.pdf Version: 2024-02-01



IAMES C STECEN

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Distinct and Temporally Stable Assembly Mechanisms Shape Bacterial and Fungal Communities in<br>Vineyard Soils. Microbial Ecology, 2023, 86, 337-349.                                                          | 2.8  | 6         |
| 2  | ORT: a workflow linking genome-scale metabolic models with reactive transport codes.<br>Bioinformatics, 2022, 38, 778-784.                                                                                     | 4.1  | 2         |
| 3  | The ecological assembly of bacterial communities in Antarctic wetlands varies across levels of phylogenetic resolution. Environmental Microbiology, 2022, , .                                                  | 3.8  | 1         |
| 4  | Implications of sample treatment on characterization of riverine dissolved organic matter.<br>Environmental Sciences: Processes and Impacts, 2022, 24, 773-782.                                                | 3.5  | 6         |
| 5  | Inferring the Contribution of Microbial Taxa and Organic Matter Molecular Formulas to Ecological Assembly. Frontiers in Microbiology, 2022, 13, 803420.                                                        | 3.5  | 5         |
| 6  | Integrated, Coordinated, Open, and Networked (ICON) Science to Advance the Geosciences:<br>Introduction and Synthesis of a Special Collection of Commentary Articles. Earth and Space Science,<br>2022, 9, .   | 2.6  | 14        |
| 7  | Movement with meaning: integrating information into metaâ€ecology. Oikos, 2022, 2022, .                                                                                                                        | 2.7  | 12        |
| 8  | Advancing river corridor science beyond disciplinary boundaries with an inductive approach to catalyse hypothesis generation. Hydrological Processes, 2022, 36, .                                              | 2.6  | 7         |
| 9  | Dissolved oxygen sensor in an automated hyporheic sampling system reveals biogeochemical dynamics. , 2022, 1, e0000014.                                                                                        |      | 0         |
| 10 | Disinfection byproducts formed during drinking water treatment reveal an export control point for<br>dissolved organic matter in a subalpine headwater stream. Water Research X, 2022, 15, 100144.             | 6.1  | 7         |
| 11 | Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models. , 2022, , 9-47.                                                                            |      | 7         |
| 12 | It Takes a Village: Using a Crowdsourced Approach to Investigate Organic Matter Composition in<br>Global Rivers Through the Lens of Ecological Theory. Frontiers in Water, 2022, 4, .                          | 2.3  | 3         |
| 13 | Riverbed Temperature and 4D ERT Monitoring Reveals Heterogenous Horizontal and Vertical<br>Groundwater-Surface Water Exchange Flows Under Dynamic Stage Conditions. Frontiers in Earth<br>Science, 2022, 10, . | 1.8  | 1         |
| 14 | Continentalâ€scale niche differentiation of dominant topsoil archaea in drylands. Environmental<br>Microbiology, 2022, 24, 5483-5497.                                                                          | 3.8  | 3         |
| 15 | Microbial and Environmental Processes Shape the Link between Organic Matter Functional Traits and<br>Composition. Environmental Science & Technology, 2022, 56, 10504-10516.                                   | 10.0 | 27        |
| 16 | Organic matter transformations are disconnected between surface water and the hyporheic zone.<br>Biogeosciences, 2022, 19, 3099-3110.                                                                          | 3.3  | 4         |
| 17 | Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.                                       | 5.4  | 22        |
| 18 | A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.                                                                                                                             | 17.5 | 457       |

| #  | Article                                                                                                                                                                                                        | IF         | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 19 | Small streams dominate US tidal reaches and will be disproportionately impacted by sea-level rise.<br>Science of the Total Environment, 2021, 753, 141944.                                                     | 8.0        | 7              |
| 20 | Special Collection on Open Collaboration Across Geosciences. Eos, 2021, 102, .                                                                                                                                 | 0.1        | 20             |
| 21 | Coupled Biotic-Abiotic Processes Control Biogeochemical Cycling of Dissolved Organic Matter in the<br>Columbia River Hyporheic Zone. Frontiers in Water, 2021, 2, .                                            | 2.3        | 18             |
| 22 | Antecedent conditions determine the biogeochemical response of coastal soils to seawater exposure.<br>Soil Biology and Biochemistry, 2021, 153, 108104.                                                        | 8.8        | 7              |
| 23 | Historical Contingency in Microbial Resilience to Hydrologic Perturbations. Frontiers in Water, 2021, 3, .                                                                                                     | 2.3        | 2              |
| 24 | Evaluating a Laboratory Flume Microbiome as a Window Into Natural Riverbed Biogeochemistry.<br>Frontiers in Water, 2021, 3, .                                                                                  | 2.3        | 3              |
| 25 | Sample Identifiers and Metadata to Support Data Management and Reuse in Multidisciplinary Ecosystem<br>Sciences. Data Science Journal, 2021, 20, 11.                                                           | 1.3        | 11             |
| 26 | Assembly of the <i>Populus</i> Microbiome Is Temporally Dynamic and Determined by Selective and Stochastic Factors. MSphere, 2021, 6, e0131620.                                                                | 2.9        | 25             |
| 27 | Disturbance triggers non-linear microbe–environment feedbacks. Biogeosciences, 2021, 18, 4773-4789.                                                                                                            | 3.3        | 8              |
| 28 | Amount and reactivity of dissolved organic matter export are affected by land cover change from<br>oldâ€growth to secondâ€growth forests in headwater ecosystems. Hydrological Processes, 2021, 35,<br>e14343. | 2.6        | 3              |
| 29 | A novel construct for scaling groundwater–river interactions based on machine-guided hydromorphic classification. Environmental Research Letters, 2021, 16, 104016.                                            | 5.2        | 1              |
| 30 | Ecological theory applied to environmental metabolomes reveals compositional divergence despite conserved molecular properties. Science of the Total Environment, 2021, 788, 147409.                           | 8.0        | 21             |
| 31 | Contrasting Community Assembly Forces Drive Microbial Structural and Potential Functional<br>Responses to Precipitation in an Incipient Soil System. Frontiers in Microbiology, 2021, 12, 754698.              | 3.5        | 4              |
| 32 | TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.                                                                                                        | 9.5        | 1,038          |
| 33 | Temperature drives local contributions to beta diversity in mountain streams: Stochastic and deterministic processes. Global Ecology and Biogeography, 2020, 29, 420-432.                                      | 5.8        | 30             |
| 34 | Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer) Tj ETQq0 0 (                                                                                                | ) rgBT /Ov | erlock 10 Tf 5 |
| 35 | Representing Organic Matter Thermodynamics in Biogeochemical Reactions via Substrate-Explicit<br>Modeling. Frontiers in Microbiology, 2020, 11, 531756.                                                        | 3.5        | 27             |

 <sup>&</sup>lt;sup>36</sup> Using Community Science to Reveal the Global Chemogeography of River Metabolomes. Metabolites,
2020, 10, 518.
2.9 27

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Using metacommunity ecology to understand environmental metabolomes. Nature Communications, 2020, 11, 6369.                                                                                                       | 12.8 | 51        |
| 38 | Carbon Limitation Leads to Thermodynamic Regulation of Aerobic Metabolism. Environmental Science and Technology Letters, 2020, 7, 517-524.                                                                        | 8.7  | 32        |
| 39 | Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil<br>Biology and Biochemistry, 2020, 148, 107866.                                                                 | 8.8  | 49        |
| 40 | Distinct assembly mechanisms underlie similar biogeographical patterns of rare and abundant bacteria<br>in Tibetan Plateau grassland soils. Environmental Microbiology, 2020, 22, 2261-2272.                      | 3.8  | 77        |
| 41 | Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest.<br>Biogeosciences, 2020, 17, 771-780.                                                                        | 3.3  | 5         |
| 42 | Ecological Assembly Processes Are Coordinated between Bacterial and Viral Communities in<br>Fractured Shale Ecosystems. MSystems, 2020, 5, .                                                                      | 3.8  | 15        |
| 43 | Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome. PLoS ONE, 2020, 15, e0228165.                                                                                          | 2.5  | 12        |
| 44 | Methane and nitrous oxide porewater concentrations and surface fluxes of a regulated river. Science of the Total Environment, 2020, 715, 136920.                                                                  | 8.0  | 20        |
| 45 | A Flux Detection Probe to Quantify Dynamic Groundwater‧urface Water Exchange in the Hyporheic<br>Zone. Ground Water, 2020, 58, 892-900.                                                                           | 1.3  | 8         |
| 46 | Active layer depth and soil properties impact specific leaf area variation and ecosystem productivity in a boreal forest. PLoS ONE, 2020, 15, e0232506.                                                           | 2.5  | 8         |
| 47 | Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities. Biogeosciences, 2019, 16, 3911-3928.                                        | 3.3  | 19        |
| 48 | Forfeiting the priority effect: turnover defines biofilm community succession. ISME Journal, 2019, 13, 1865-1877.                                                                                                 | 9.8  | 83        |
| 49 | Assessing Microbial Community Patterns During Incipient Soil Formation From Basalt. Journal of<br>Geophysical Research G: Biogeosciences, 2019, 124, 941-958.                                                     | 3.0  | 16        |
| 50 | Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network. Hydrology and Earth System Sciences, 2019, 23, 5199-5225.                                                   | 4.9  | 23        |
| 51 | Subsurface biogeochemistry is a missing link between ecology and hydrology in dam-impacted river corridors. Science of the Total Environment, 2019, 657, 435-445.                                                 | 8.0  | 19        |
| 52 | Co-located contemporaneous mapping of morphological, hydrological, chemical, and biological<br>conditions in a 5th-order mountain stream network, Oregon, USA. Earth System Science Data, 2019, 11,<br>1567-1581. | 9.9  | 14        |
| 53 | Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME Journal, 2018, 12, 1072-1083.                                                                                        | 9.8  | 591       |
| 54 | Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach. Water Resources Research, 2018, 54, 2715-2730.                                                                                            | 4.2  | 17        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications, 2018, 9, 585.                                                                                            | 12.8 | 110       |
| 56 | WHONDRS: a Community Resource for Studying Dynamic River Corridors. MSystems, 2018, 3, .                                                                                                                                             | 3.8  | 22        |
| 57 | Drought Conditions Maximize the Impact of Highâ€Frequency Flow Variations on Thermal Regimes and<br>Biogeochemical Function in the Hyporheic Zone. Water Resources Research, 2018, 54, 7361-7382.                                    | 4.2  | 63        |
| 58 | Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Molecular Ecology, 2018, 27, 5238-5251.                                                 | 3.9  | 147       |
| 59 | At the Nexus of History, Ecology, and Hydrobiogeochemistry: Improved Predictions across Scales through Integration. MSystems, 2018, 3, .                                                                                             | 3.8  | 5         |
| 60 | A unified conceptual framework for prediction and control of microbiomes. Current Opinion in Microbiology, 2018, 44, 20-27.                                                                                                          | 5.1  | 42        |
| 61 | Multi 'omics comparison reveals metabolome biochemistry, not microbiome composition or gene expression, corresponds to elevated biogeochemical function in the hyporheic zone. Science of the Total Environment, 2018, 642, 742-753. | 8.0  | 60        |
| 62 | Dispersal limitation and thermodynamic constraints govern spatial structure of permafrost microbial communities. FEMS Microbiology Ecology, 2018, 94, .                                                                              | 2.7  | 62        |
| 63 | Nearly a decadeâ€long repeatable seasonal diversity patterns of bacterioplankton communities in the<br>eutrophic Lake Donghu (Wuhan, China). Molecular Ecology, 2017, 26, 3839-3850.                                                 | 3.9  | 76        |
| 64 | Colonization Habitat Controls Biomass, Composition, and Metabolic Activity of Attached Microbial<br>Communities in the Columbia River Hyporheic Corridor. Applied and Environmental Microbiology,<br>2017, 83, .                     | 3.1  | 20        |
| 65 | Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. Scientific Reports, 2017, 7, 45691.                                                                                             | 3.3  | 71        |
| 66 | Deterministic influences exceed dispersal effects on hydrologicallyâ€connected microbiomes.<br>Environmental Microbiology, 2017, 19, 1552-1567.                                                                                      | 3.8  | 143       |
| 67 | Geochemical and Microbial Community Attributes in Relation to Hyporheic Zone Geological Facies.<br>Scientific Reports, 2017, 7, 12006.                                                                                               | 3.3  | 40        |
| 68 | Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse. Scientific Reports, 2017, 7, 17492.                                                                          | 3.3  | 79        |
| 69 | Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function. Processes, 2017, 5, 65.                                                                                                                              | 2.8  | 93        |
| 70 | Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme<br>Response in Denitrification Process. Frontiers in Microbiology, 2017, 8, 1866.                                                    | 3.5  | 40        |
| 71 | Soil respiration across aÂpermafrost transition zone: spatial structure and environmental correlates.<br>Biogeosciences, 2017, 14, 4341-4354.                                                                                        | 3.3  | 7         |
| 72 | Biogeochemical cycling at the aquatic–terrestrial interface is linked to parafluvial hyporheic zone inundation history. Biogeosciences, 2017, 14, 4229-4241.                                                                         | 3.3  | 25        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via<br>Biochemical and Thermodynamic Processes. Journal of Geophysical Research G: Biogeosciences, 2017,<br>122, 3188-3205.           | 3.0  | 58        |
| 74 | Aligning the Measurement of Microbial Diversity with Macroecological Theory. Frontiers in Microbiology, 2016, 7, 1487.                                                                                                          | 3.5  | 13        |
| 75 | Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.<br>Frontiers in Microbiology, 2016, 7, 1949.                                                                                           | 3.5  | 87        |
| 76 | Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem.<br>Molecular Ecology, 2016, 25, 4674-4688.                                                                                  | 3.9  | 59        |
| 77 | Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2976-2987.                                                 | 3.0  | 49        |
| 78 | Coupling among Microbial Communities, Biogeochemistry and Mineralogy across Biogeochemical<br>Facies. Scientific Reports, 2016, 6, 30553.                                                                                       | 3.3  | 26        |
| 79 | Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications, 2016, 7, 11237.                                                                            | 12.8 | 290       |
| 80 | Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology, 2015, 6, 370.                                                                                                  | 3.5  | 578       |
| 81 | The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Frontiers in Microbiology, 2015, 6, 713.                                                                                                | 3.5  | 280       |
| 82 | Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of<br>Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China. PLoS ONE, 2015, 10,<br>e0145747.          | 2.5  | 44        |
| 83 | Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1326-32. | 7.1  | 972       |
| 84 | The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes. Cell Reports, 2015, 11, 527-538.                                                                                     | 6.4  | 475       |
| 85 | On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions. Frontiers in Genetics, 2014, 5, 420.                                                                               | 2.3  | 27        |
| 86 | When should species richness be energy limited, and how would we know?. Ecology Letters, 2014, 17, 401-413.                                                                                                                     | 6.4  | 107       |
| 87 | Linking microbial community structure to <b>β</b> -glucosidic function in soil aggregates. ISME<br>Journal, 2013, 7, 2044-2053.                                                                                                 | 9.8  | 110       |
| 88 | Quantifying community assembly processes and identifying features that impose them. ISME Journal, 2013, 7, 2069-2079.                                                                                                           | 9.8  | 1,354     |
| 89 | Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities.<br>Global Ecology and Biogeography, 2013, 22, 202-212.                                                                      | 5.8  | 121       |
| 90 | Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME Journal, 2013, 7, 1310-1321.                                                                            | 9.8  | 515       |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecology Letters, 2013, 16, 1069-1078.                                                            | 6.4  | 89        |
| 92  | Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat?. New Phytologist, 2013, 198, 252-263.                         | 7.3  | 124       |
| 93  | The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Frontiers in Microbiology, 2013, 4, 323.                                            | 3.5  | 75        |
| 94  | Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1051-1060.                      | 2.6  | 40        |
| 95  | Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves. Proceedings of the<br>Royal Society B: Biological Sciences, 2012, 279, 1993-2002.                                        | 2.6  | 54        |
| 96  | Interannual variability of growth and reproduction in <i>Bursera simaruba</i> : the role of allometry and resource variability. Ecology, 2012, 93, 180-190.                                               | 3.2  | 19        |
| 97  | Response to Comments on "Disentangling the Drivers of β Diversity Along Latitudinal and Elevational<br>Gradients― Science, 2012, 335, 1573-1573.                                                          | 12.6 | 8         |
| 98  | Eco-Evolutionary Community Dynamics: Covariation between Diversity and Invasibility across<br>Temperature Gradients. American Naturalist, 2012, 180, E110-E126.                                           | 2.1  | 9         |
| 99  | Testing the metabolic theory of ecology. Ecology Letters, 2012, 15, 1465-1474.                                                                                                                            | 6.4  | 155       |
| 100 | Stochastic and deterministic assembly processes in subsurface microbial communities. ISME Journal, 2012, 6, 1653-1664.                                                                                    | 9.8  | 1,203     |
| 101 | Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology, 2012, 93, 490-499.                                                     | 3.2  | 168       |
| 102 | The biogeography and filtering of woody plant functional diversity in North and South America.<br>Global Ecology and Biogeography, 2012, 21, 798-808.                                                     | 5.8  | 235       |
| 103 | Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters, 2011, 14, 19-28.                                                                                | 6.4  | 1,899     |
| 104 | Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and<br>Biogeography, 2011, 20, 744-754.                                                                          | 5.8  | 195       |
| 105 | Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower<br>latitudes. New Phytologist, 2011, 191, 777-788.                                                | 7.3  | 155       |
| 106 | Disentangling the Drivers of $\hat{I}^2$ Diversity Along Latitudinal and Elevational Gradients. Science, 2011, 333, 1755-1758.                                                                            | 12.6 | 617       |
| 107 | Trophic ecology of an aquatic mite (Piona carnea) preying on Daphnia pulex: effects of predator density, nutrient supply and a second predator (Chaoborus americanus). Hydrobiologia, 2011, 668, 171-182. | 2.0  | 1         |
| 108 | Inferring Ecological Processes from Taxonomic, Phylogenetic and Functional Trait β-Diversity. PLoS<br>ONE, 2011, 6, e20906.                                                                               | 2.5  | 69        |

| #   | Article                                                                                                                                                     | lF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Integrating elements and energy through the metabolic dependencies of gross growth efficiency and the threshold elemental ratio. Oikos, 2010, 119, 752.     | 2.7 | Ο         |
| 110 | Integrating elements and energy through the metabolic dependencies of gross growth efficiency and the threshold elemental ratio. Oikos, 2010, 119, 752-765. | 2.7 | 51        |
| 111 | Functional trait assembly through ecological and evolutionary time. Theoretical Ecology, 2009, 2, 239-250.                                                  | 1.0 | 19        |
| 112 | Advancing the metabolic theory of biodiversity. Ecology Letters, 2009, 12, 1001-1015.                                                                       | 6.4 | 68        |
| 113 | Aboveâ€ground forest biomass is not consistently related to wood density in tropical forests. Global<br>Ecology and Biogeography, 2009, 18, 617-625.        | 5.8 | 46        |
| 114 | On the relationship between mass and diameter distributions in tree communities. Ecology Letters, 2008, 11, 1287-1293.                                      | 6.4 | 13        |
| 115 | The control of color change in the Pacific tree frog, Hyla regilla. Canadian Journal of Zoology, 2004,<br>82, 889-896.                                      | 1.0 | 39        |