
Joaquim A Nobrega

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1981007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochemistry, 2005, 40, 3485-3490.	1.8	213
2	Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 2121-2132.	1.5	151
3	Determination of residual carbon by inductively-coupled plasma optical emission spectrometry with axial and radial view configurations. Analytica Chimica Acta, 2001, 445, 269-275.	2.6	118
4	Sample preparation in alkaline media. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 465-495.	1.5	109
5	Flow analysis strategies to greener analytical chemistry. An overview. Green Chemistry, 2001, 3, 216.	4.6	89
6	Focused-microwave-assisted strategies for sample preparation. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1855-1876.	1.5	87
7	Acid extraction and cloud point preconcentration as sample preparation strategies for cobalt determination in biological materials by thermospray flame furnace atomic absorption spectrometry. Microchemical Journal, 2006, 82, 189-195.	2.3	86
8	Microwave-assisted digestion methods: towards greener approaches for plasma-based analytical techniques. Journal of Analytical Atomic Spectrometry, 2017, 32, 1448-1466.	1.6	86
9	Microwave-assisted digestion procedures for biological samples with diluted nitric acid: Identification of reaction products. Talanta, 2009, 79, 396-401.	2.9	85
10	Microwave-assisted digestion of organic samples: How simple can it become?. Talanta, 2012, 98, 272-276.	2.9	85
11	Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 749-753.	1.5	83
12	Microwave-assisted diluted acid digestion for trace elements analysis of edible soybean products. Food Chemistry, 2015, 175, 212-217.	4.2	83
13	A critical evaluation of digestion procedures for coffee samples using diluted nitric acid in closed vessels for inductively coupled plasma optical emission spectrometry. Talanta, 2009, 78, 1378-1382.	2.9	80
14	Traditional Calibration Methods in Atomic Spectrometry and New Calibration Strategies for Inductively Coupled Plasma Mass Spectrometry. Frontiers in Chemistry, 2018, 6, 504.	1.8	78
15	Comparison of Heating Extraction Procedures for Al, Ca, Mg, and Mn in Tea Samples Analytical Sciences, 2002, 18, 313-318.	0.8	70
16	Evaluation of inductively coupled plasma optical emission spectrometers with axially and radially viewed configurations. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1905-1913.	1.5	70
17	Evaluation of a digestion procedure based on the use of diluted nitric acid solutions and H ₂ O ₂ for the multielement determination of whole milk powder and bovine liver by ICP-based techniques. Journal of Analytical Atomic Spectrometry, 2014, 29, 332-338.	1.6	70
18	Determination of Cr, Ni, Pb and V in gasoline and ethanol fuel by microwave plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 755.	1.6	67

2

#	Article	IF	CITATIONS
19	Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 717-724.	1.5	65
20	Understanding the process of microwave-assisted digestion combining diluted nitric acid and oxygen as auxiliary reagent. Microchemical Journal, 2011, 99, 193-196.	2.3	65
21	Greening sample preparation in inorganic analysis. TrAC - Trends in Analytical Chemistry, 2013, 45, 79-92.	5.8	65
22	Multi-energy calibration applied to atomic spectrometry. Analytica Chimica Acta, 2017, 982, 31-36.	2.6	64
23	Direct determination of iron and selenium in bovine milk by graphite furnace atomic absorption spectrometry. Food Chemistry, 2003, 83, 457-462.	4.2	63
24	Direct determination of Cu and Zn in fruit juices and bovine milk by thermospray flame furnace atomic absorption spectrometry. Talanta, 2004, 64, 912-917.	2.9	63
25	Direct Determination of Major and Trace Elements in Milk by Inductively Coupled Plasma Atomic Emission and Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 1997, 12, 1243-1246.	1.6	61
26	Determination of Cd and Pb in food slurries by GFAAS using cryogenic grinding for sample preparation. Analytical and Bioanalytical Chemistry, 2002, 373, 183-189.	1.9	61
27	A simple dilute-and-shoot procedure for Si determination in diesel and biodiesel by microwave-induced plasma optical emission spectrometry. Microchemical Journal, 2013, 106, 318-322.	2.3	61
28	Microwave-assisted digestion in closed vessels: effect of pressurization with oxygen on digestion process with diluted nitric acid. Analytical Methods, 2010, 2, 734.	1.3	59
29	Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid. Talanta, 2011, 83, 1324-1328.	2.9	58
30	Determination of macro- and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 316-320.	1.5	56
31	Improvement of microwave-assisted digestion of milk powder with diluted nitric acid using oxygen as auxiliary reagent. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 394-398.	1.5	55
32	Determination of ytterbium in animal faeces by tungsten coil electrothermal atomic absorption spectrometry. Talanta, 1998, 47, 613-623.	2.9	54
33	Slurry Nebulization in Plasmas for Analysis of Inorganic Materials. Applied Spectroscopy Reviews, 2006, 41, 427-448.	3.4	51
34	Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1987-1993.	1.5	50
35	Focused Microwave-Induced Combustion: A New Technique for Sample Digestion. Analytical Chemistry, 2010, 82, 2155-2160.	3.2	50
36	Determination of P, S and Si in biodiesel, diesel and lubricating oil using ICP-MS/MS. Analytical Methods, 2014, 6, 4516-4520.	1.3	50

#	Article	IF	CITATIONS
37	Sample preparation for arsenic speciation in terrestrial plants—A review. Talanta, 2013, 115, 291-299.	2.9	48
38	UV photochemical generation of volatile cadmium species. Journal of Analytical Atomic Spectrometry, 2011, 26, 2519.	1.6	47
39	Recent developments in microwave-induced plasma optical emission spectrometry and applications of a commercial Hammer-cavity instrument. TrAC - Trends in Analytical Chemistry, 2019, 116, 151-157.	5.8	47
40	The use of silica-immobilized brown alga (Pilayella littoralis) for metal preconcentration and determination by inductively coupled plasma optical emission spectrometry. Talanta, 2003, 60, 1131-1140.	2.9	44
41	Microwave-assisted photo-Fenton decomposition of chlorfenvinphos and cypermethrin in residual water. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 32-37.	2.0	44
42	Effect of simultaneous cooling on microwave-assisted wet digestion of biological samples with diluted nitric acid and O2 pressure. Analytica Chimica Acta, 2014, 837, 16-22.	2.6	42
43	Flow-injection spectrophotometric determination of ascorbic acid in pharmaceutical products with the Prussian Blue reaction. Talanta, 1996, 43, 971-976.	2.9	41
44	REVIEW: Iodine Determination by Inductively Coupled Plasma Spectrometry. Applied Spectroscopy Reviews, 2010, 45, 447-473.	3.4	41
45	Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta, 2012, 94, 308-314.	2.9	41
46	Tandem mass spectrometry (ICP-MS/MS) for overcoming molybdenum oxide interferences on Cd determination in milk. Microchemical Journal, 2015, 120, 64-68.	2.3	41
47	Determination of lead in blood by tungsten coil electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1995, 50, 1469-1474.	1.5	40
48	Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements. Microchemical Journal, 2017, 130, 271-275.	2.3	40
49	Direct analysis of biodiesel microemulsions using an inductively coupled plasma mass spectrometry. Microchemical Journal, 2010, 96, 146-150.	2.3	39
50	Reducing Polyatomic Interferences in the ICP-MS Determination of Chromium and Vanadium in Biofluids and Tissues. Applied Spectroscopy, 1998, 52, 205-211.	1.2	38
51	Study of the protein-bound fraction of calcium, iron, magnesium and zinc in bovine milk. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1909-1916.	1.5	38
52	Tungsten coil atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 225-229.	1.5	38
53	Advances with tungsten coil atomizers: Continuum source atomic absorption and emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 589-598.	1.5	37
54	Direct determination of Cd, Cu and Pb in wines and grape juices by thermospray flame furnace atomic absorption spectrometry. Talanta, 2008, 76, 1113-1118.	2.9	37

#	Article	IF	CITATIONS
55	Determination of cadmium in biological materials by tungsten coil atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1993, 8, 243-245.	1.6	36
56	Single vessel procedure for acid-vapour partial digestion in a focused microwave: Fe and Co determination in biological samples by ETAAS. Analyst, The, 2000, 125, 1861-1864.	1.7	36
57	Microwave-Assisted Acid Decomposition of Animal- and Plant-Derived Samples for Element Analysis. Journal of Agricultural and Food Chemistry, 2002, 50, 4164-4168.	2.4	36
58	Oxygen bomb combustion of biological samples for inductively coupled plasma optical emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 2195-2201.	1.5	36
59	Determination of barium in waters by tungsten coil electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1994, 9, 861.	1.6	35
60	Determination of Elements in Biological and Botanical Materials by Inductively Coupled Plasma Atomic Emission and Mass Spectrometry After Extraction With a Tertiary Amine Reagent. Journal of Analytical Atomic Spectrometry, 1997, 12, 1239-1242.	1.6	35
61	Asynchronous merging zones system: spectrophotometric determination of Fe(II) and Fe(III) in pharmaceutical products. Talanta, 1999, 49, 505-510.	2.9	35
62	Simultaneous determination of the Lanthanides by tungsten coil atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2008, 23, 361-366.	1.6	35
63	On-line electrolytic dissolution of alloys in flow injection analysis. Analytica Chimica Acta, 1988, 214, 397-400.	2.6	34
64	Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry. Talanta, 2010, 81, 1781-1787.	2.9	34
65	Behaviour of arsenic and selenium in an ICP-QMS with collision and reaction interface. Journal of Analytical Atomic Spectrometry, 2010, 25, 1763.	1.6	34
66	Performance evaluation of collision–reaction interface and internal standardization in quadrupole ICP-MS measurements. Talanta, 2011, 86, 241-247.	2.9	34
67	Determination of Ca, Mg, and Zn in biodiesel microemulsions by FAAS using discrete nebulization. Fuel, 2012, 93, 167-171.	3.4	34
68	Dispersive liquid-liquid microextraction based on deep eutectic solvent for elemental impurities determination in oral and parenteral drugs by inductively coupled plasma optical emission spectrometry. Analytica Chimica Acta, 2021, 1185, 339052.	2.6	34
69	Flow injection potentiometric determination of saccharin in dietary products with relocation of filtration unit. Talanta, 1994, 41, 731-734.	2.9	33
70	Chemical modifiers in a tungsten coil electrothermal atomizer Journal of Analytical Atomic Spectrometry, 1998, 13, 29-35.	1.6	33
71	Determination of selenium in nutritionally relevant foods by graphite furnace atomic absorption spectrometry using arsenic as internal standard. Food Chemistry, 2005, 93, 355-360.	4.2	33
72	Flow injection spectrophotometric method for chloride determination in natural waters using Hg(SCN) immobilized in epoxy resin. Talanta, 2005, 65, 965-970.	2.9	33

#	Article	IF	CITATIONS
73	Determination of Cd in urine by cloud point extraction–tungsten coil atomic absorption spectrometry. Talanta, 2008, 76, 1252-1255.	2.9	33
74	Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis. Talanta, 2013, 117, 419-424.	2.9	33
75	Simple and efficient elimination of copper(II) in sugar-cane spirits. Food Chemistry, 2007, 101, 33-36.	4.2	32
76	Determination of lead in medicinal plants by high-resolution continuum source graphite furnace atomic absorption spectrometry using direct solid sampling. Talanta, 2012, 100, 21-26.	2.9	32
77	Microwave-assisted digestion using dilute nitric acid solution and investigation of calibration strategies for determination of As, Cd, Hg and Pb in dietary supplements using ICP-MS. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 471-478.	1.4	32
78	Effect of modifiers on thermal behaviour of Se in acid digestates and slurries of vegetables by graphite furnace atomic absorption spectrometry. Food Chemistry, 2002, 79, 517-523.	4.2	31
79	Determination of Cd, Cr, Hg and Pb in plastics from waste electrical and electronic equipment by inductively coupled plasma mass spectrometry with collision–reaction interface technology. Journal of Hazardous Materials, 2011, 190, 833-839.	6.5	31
80	Multi-isotope calibration for inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 1157-1162.	1.9	31
81	On-line electrolytic dissolution of alloys in flow-injection analysis. Part 3. Multi-elemental analysis of stainless steels by inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 1991, 245, 211-216.	2.6	30
82	Determinação direta de selênio em água de coco e em leite de coco utilizando espectrometria de absorção atômica com atomização eletrotérmica em forno de grafite. Quimica Nova, 2000, 23, 310-312.	0.3	30
83	Evaluation and application of bismuth as an internal standard for the determination of lead in wines by simultaneous electrothermal atomic absorption spectrometry. Analyst, The, 2002, 127, 157-162.	1.7	30
84	Surface and gas phase temperatures of a tungsten coil atomizer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1789-1799.	1.5	30
85	Evaluation of standard dilution analysis (SDA) of beverages and foodstuffs by ICP OES. Journal of Analytical Atomic Spectrometry, 2016, 31, 1216-1222.	1.6	29
86	Separation and preconcentration by flow injection coupled to tungsten coil electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1996, 51, 1925-1934.	1.5	28
87	Use of factorial design for optimization of microwave-assisted digestion of lubricating oil. Journal of the Brazilian Chemical Society, 2005, 16, 1269-1274.	0.6	28
88	Dilute-and-shoot procedure for the determination of mineral constituents in vinegar samples by axially viewed inductively coupled plasma optical emission spectrometry (ICP OES). Food Additives and Contaminants, 2007, 24, 130-139.	2.0	28
89	Determination of zinc and copper in human hair by slurry sampling employing sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 2007, 87, 128-131.	2.3	28
90	Green Strategies in Trace Analysis: A Glimpse of Simple Alternatives for Sample Pretreatment and Analyte Determination. Spectroscopy Letters, 2009, 42, 418-429.	0.5	28

#	Article	IF	CITATIONS
91	Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 544-548.	1.5	28
92	Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2014, 806, 91-96.	2.6	28
93	Aerosol dilution as a simple strategy for analysis of complex samples by ICP-MS. Talanta, 2018, 178, 805-810.	2.9	28
94	Determination of mercury in agroindustrial samples by flow-injection cold vapor atomic absorption spectrometry using ion exchange and reductive elution. Talanta, 2000, 51, 587-594.	2.9	27
95	Focused microwave-assisted acid digestion of oils: an evaluation of the residual carbon content. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1981-1985.	1.5	27
96	Evaluation of lines of boron, phosphorus and sulfur by high-resolution continuum source flame atomic absorption spectrometry for plant analysis. Microchemical Journal, 2013, 109, 134-138.	2.3	27
97	Determination of molybdenum in plants by vortex-assisted emulsification solidified floating organic drop microextraction and flame atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 86, 142-145.	1.5	27
98	Tungsten coil atomic emission spectrometry combined with dispersive liquid–liquid microextraction: A synergistic association for chromium determination in water samples. Talanta, 2016, 148, 602-608.	2.9	27
99	Flow injection spectrophotometric determination of aspartame in dietary products. Analyst, The, 1994, 119, 2101-2104.	1.7	26
100	Homogenization of breakfast cereals using cryogenic grinding. Journal of Food Engineering, 2002, 51, 59-63.	2.7	26
101	Use of modifiers with metal atomizers in electrothermal AAS: a short review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1337-1345.	1.5	26
102	Complementary FPLC-ICP-MS and MALDI-TOF for studying vanadium association to human serum proteins. Journal of Analytical Atomic Spectrometry, 2005, 20, 210-215.	1.6	26
103	A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS. Analytical Methods, 2015, 7, 1215-1220.	1.3	26
104	Atomization of Al in a tungsten coil electrothermal atomic absorption spectrophotometer. Talanta, 1999, 48, 695-703.	2.9	25
105	A new procedure for bovine milk digestion in a focused microwave oven: gradual sample addition to pre-heated acid. Talanta, 2005, 65, 505-510.	2.9	25
106	Comparison of decomposition procedures for analysis of titanium dioxide using inductively coupled plasma optical emission spectrometry. Microchemical Journal, 2002, 71, 41-48.	2.3	24
107	Determination of Total Sulfur in Agricultural Samples by High-Resolution Continuum Source Flame Molecular Absorption Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 2197-2201.	2.4	24
108	Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 78, 58-61.	1.5	24

#	Article	IF	CITATIONS
109	Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 126, 31-36.	1.5	24
110	Multielemental Determination of As, Bi, Ge, Sb, and Sn in Agricultural Samples Using Hydride Generation Coupled to Microwave-Induced Plasma Optical Emission Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 4839-4842.	2.4	24
111	Evaluation of dilute-and-shoot procedure for determination of inorganic impurities in liquid pharmaceutical samples by ICP OES. Microchemical Journal, 2019, 146, 948-956.	2.3	24
112	Calculating limits of detection and defining working ranges for multi-signal calibration methods. Journal of Analytical Atomic Spectrometry, 2020, 35, 1614-1620.	1.6	24
113	Flow injection spectrophotometric determination of cyclamate in low calorie soft drinks and sweeteners. Analyst, The, 1995, 120, 2009-2012.	1.7	23
114	Determination of cadmium in hair and blood by tungsten coil electrothermal atomic absorption spectrometry with chemical modifiers. Talanta, 1999, 48, 537-549.	2.9	23
115	The use of water soluble tertiary amine reagent for solubilization and metal determination in fish muscle tissue. Journal of the Brazilian Chemical Society, 2005, 16, 69-73.	0.6	23
116	Determination and fractionation of barium in Brazil nuts. Journal of the Brazilian Chemical Society, 2009, 20, 760-769.	0.6	23
117	Ruthenium(II) Phosphine/Mercapto Complexes: Their in Vitro Cytotoxicity Evaluation and Actions as Inhibitors of Topoisomerase and Proteasome Acting as Possible Triggers of Cell Death Induction. Inorganic Chemistry, 2020, 59, 15004-15018.	1.9	23
118	Determination of dysprosium and europium in sheep faeces by graphite furnace and tungsten coil electrothermal atomic absorption spectrometry. Talanta, 2001, 55, 847-854.	2.9	22
119	A new strategy for preparation of hair slurries using cryogenic grinding and water-soluble tertiary-amines medium. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 1973-1980.	1.5	22
120	Internal standardization and least-squares background correction in high-resolution continuum source flame atomic absorption spectrometry to eliminate interferences on determination of Pb in phosphoric acid. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 992-995.	1.5	22
121	Application of the interference standard method for the determination of sulfur, manganese and iron in foods by inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2011, 706, 223-228.	2.6	22
122	Calibration strategies to overcome matrix effects in laser-induced breakdown spectroscopy: Direct calcium and phosphorus determination in solid mineral supplements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 155, 90-98.	1.5	22
123	Cloud point extraction to avoid interferences by structured background on nickel determination in plant materials by FAAS. Analytical Methods, 2009, 1, 68.	1.3	21
124	Direct determination of sodium, potassium, chromium and vanadium in biodiesel fuel by tungsten coil atomic emission spectrometry. Analytica Chimica Acta, 2014, 806, 85-90.	2.6	21
125	Determination of carbon in digested samples and amino acids by inductively coupled plasma tandem mass spectrometry. Microchemical Journal, 2015, 122, 29-32.	2.3	21
126	Microwave-assisted digestion using diluted acid and base solutions for plant analysis by ICP OES. Journal of Analytical Atomic Spectrometry, 2016, 31, 337-343.	1.6	21

#	Article	IF	CITATIONS
127	Flow Injection Spectrophotometric Determination of Free and Total Sulfite In Wines Based on the Induced Oxidation of Manganese(II). Analytical Letters, 1998, 31, 2195-2208.	1.0	20
128	Aerosol generation of As and Se hydrides using a new Flow Blurring® multiple nebulizer for sample introduction in inductively coupled plasma optical emission spectrometry. Microchemical Journal, 2014, 112, 82-86.	2.3	20
129	Microwave-assisted sample preparation of medicines for determination of elemental impurities in compliance with United States Pharmacopeia: How simple can it be?. Analytica Chimica Acta, 2019, 1065, 1-11.	2.6	20
130	Determination of cadmium and lead in mussels by tungsten coil electrothermal atomic absorption spectrometry. Talanta, 1999, 50, 967-975.	2.9	19
131	Silver as internal standard for simultaneous determination of Cd and Pb in whole blood by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19, 917-922.	1.6	19
132	Fraunhofer Effect Atomic Absorption Spectrometry. Analytical Chemistry, 2005, 77, 1060-1067.	3.2	19
133	Interference standard: a new approach to minimizing spectral interferences in inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 1827.	1.6	19
134	Exploiting Mn(III)/EDTA complex in a flow system with solenoid micro-pumps coupled to long pathlength spectrophotometry for fast manganese determination. Microchemical Journal, 2011, 98, 109-114.	2.3	19
135	Combination of cool plasma and collision-reaction interface for correction of polyatomic interferences on copper signals in inductively coupled plasma quadrupole mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2011, 66, 389-393.	1.5	19
136	Tungsten coil electrothermal matrix decomposition and sample vaporization to determine P and Si in biodiesel by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 280-287.	1.6	19
137	Electrothermal behavior of sodium, potassium, calcium and magnesium in a tungsten coil atomizer and review of interfering effects. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 49-61.	1.5	18
138	Decomposição de amostras de solos assistida por radiação microondas: estratégia para evitar a formação de fluoretos insolúveis. Revista Brasileira De Ciencia Do Solo, 2005, 29, 547-553.	0.5	18
139	Determination of vanadium in human hair slurries by electrothermal atomic absorption spectrometry. Talanta, 2007, 71, 1118-1123.	2.9	18
140	Inductively coupled plasma optical emission spectrometry with axially viewed configuration: an overview of applications. Journal of the Brazilian Chemical Society, 2007, 18, 678-690.	0.6	18
141	Determination of sulfur in biodiesel microemulsions using the summation of the intensities of multiple emission lines. Talanta, 2011, 84, 995-999.	2.9	18
142	Analysis of cement slurries by inductively coupled plasma optical emission spectrometry with axial viewing. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 29-33.	1.5	17
143	Focused-microwave-assisted acid digestion: Evaluation of losses of volatile elements in marine invertebrate samples. Journal of Food Composition and Analysis, 2009, 22, 238-241.	1.9	17
144	An overview of electrothermal excitation sources for atomic emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 191-198.	1.5	17

#	Article	IF	CITATIONS
145	Overcoming the schlieren effect in flow injection spectrophotometry by introduction of large sample volumes: determination of chloride in the electrolyte of lead-acid batteries. Journal of the Brazilian Chemical Society, 1997, 8, 625-629.	0.6	16
146	An attempt to correlate fat and protein content of biological samples with residual carbon after microwave-assisted digestion. Fresenius' Journal of Analytical Chemistry, 2001, 371, 536-540.	1.5	16
147	Use of the internal standardization for difficult sampling by graphite furnace atomic absorption spectrometry. Talanta, 2004, 64, 334-337.	2.9	16
148	Use of factorial design for evaluation of plasma conditions and comparison of two liquid sample introduction systems for an axially viewed inductively coupled plasma optical emission spectrometer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 575-581.	1.5	16
149	Biomonitoring of lead in Antarctic lichens using laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2011, 26, 2238.	1.6	16
150	Interference standard applied to sulfur determination in biodiesel microemulsions by ICP-QMS. Journal of the Brazilian Chemical Society, 2012, 23, 797-803.	0.6	16
151	Axial view inductively coupled plasma optical emission spectrometry for monitoring tin concentration in canned tomato sauce samples. Food Chemistry, 2012, 131, 348-352.	4.2	16
152	Investigation of arsenic species stability by HPLC-ICP-MS in plants stored under different conditions for 12months. Microchemical Journal, 2014, 117, 122-126.	2.3	16
153	Bismuth as a general internal standard for lead in atomic absorption spectrometry. Analytica Chimica Acta, 2014, 831, 24-30.	2.6	16
154	Inductively coupled plasma mass spectrometry and standard dilution analysis applied to concentrated acids. Talanta, 2016, 161, 826-829.	2.9	16
155	Effects of multiwalled carbon nanotubes co-exposure with cadmium on zebrafish cell line: Metal uptake and accumulation, oxidative stress, genotoxicity and cell cycle. Ecotoxicology and Environmental Safety, 2020, 202, 110892.	2.9	16
156	On-Line pre-concentration of Cr(III) and Mn(II) in FI-FAAS: A critical study involving interference effects and analytical use of an immobilized 8-hydroxyquinoline minicolumn. Analytical and Bioanalytical Chemistry, 2002, 374, 131-140.	1.9	15
157	Single vessel procedure for acid vapor partial digestion of bovine liver in a focused microwave: multielement determination by ICP-OES. Talanta, 2003, 61, 81-86.	2.9	15
158	Interference standard and oxide ion detection as strategies to determine phosphorus and sulfur in fuel samples by inductively coupled plasma quadrupole mass spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1274.	1.6	15
159	Evaluation of Sample Preparation Procedures for Trace Element Determination in Brazilian Propolis by Inductively Coupled Plasma Optical Emission Spectrometry and Their Discrimination According to Geographic Region. Food Analytical Methods, 2013, 6, 872-880.	1.3	15
160	Study of chemical modifiers for the determination of chromium in biological materials by tungsten coil electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 1999, 364, 273-278.	1.5	14
161	Evaluation of selenium behavior in thermospray flame furnace atomic absorption spectrometry. Talanta, 2007, 73, 845-849.	2.9	14
162	Determination of Silicon in Lubricant Oil by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry Using Least-Square Background Correction and Internal Standardization. Analytical Letters, 2011, 44, 2150-2161.	1.0	14

#	Article	IF	CITATIONS
163	Vortex-assisted dispersive liquid–liquid microextraction for the determination of molybdenum in plants by inductively coupled plasma optical emission spectrometry. Analytical Methods, 2016, 8, 810-815.	1.3	14
164	Complexing power of alkanesulfonate ions: the lead-methanesulfonate system. Journal of Applied Electrochemistry, 1995, 25, 408.	1.5	13
165	Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate(III) by Ascorbic Acid: A Flow Injection Kinetic Experiment. Journal of Chemical Education, 1997, 74, 560.	1.1	13
166	Determination of Cobalt in Animal Feces by Tungsten Coil Atomic Absorption Spectrophotometry Analytical Sciences, 1999, 15, 165-171.	0.8	13
167	Infra-red heating as an alternative technique for fast sample preparation. Journal of the Brazilian Chemical Society, 2000, 11, 261-265.	0.6	13
168	Influence of Na, K, Ca and Mg on lead atomization by tungsten coil atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 2000, 11, 136-142.	0.6	13
169	Avaliacão de programas de aquecimento para espectrometria de absorção atômica com atomizacão eletrotérmica em filamento de tungstênio. Quimica Nova, 2000, 23, 706-708.	0.3	13
170	Matrix effects on the determination of dysprosium, europium and ytterbium used as animal faecal markers by inductively coupled plasma optical emission spectrometry with axially- and radially-viewed configurations. Journal of Analytical Atomic Spectrometry, 2001, 16, 825-830.	1.6	13
171	Direct analysis of clay and refractory materials slurries by inductively coupled plasma optical emission spectrometry with axial viewing using the simplified generalized standard additions method. Journal of Analytical Atomic Spectrometry, 2007, 22, 93-96.	1.6	13
172	Uso de scanner em espectrofotometria de absorção molecular: aplicação em experimento didático enfocando a determinação de ácido ascórbico. Quimica Nova, 2008, 31, 1577-1581.	0.3	13
173	Correction of matrix effects for As and Se in ICP OES using a Flow Blurring® multiple nebulizer. Journal of Analytical Atomic Spectrometry, 2012, 27, 2132.	1.6	13
174	Evaluation of sample preparation procedures and krypton as an interference standard probe for arsenic speciation by HPLC-ICP-QMS. Journal of Analytical Atomic Spectrometry, 2013, 28, 1303.	1.6	13
175	Dilute-and-Shoot Procedure for Determination of As, Cr, P, Pb, Si, and V in Ethanol Fuel by Inductively Coupled Plasma Tandem Mass Spectrometry. Energy & Fuels, 2015, 29, 4339-4344.	2.5	13
176	Determination of As, Cd, Hg and Pb in continuous use drugs and excipients by plasma-based techniques in compliance with the United States Pharmacopeia requirements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 138, 14-17.	1.5	13
177	Determination of Arsenic in Fruit Juices Using Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS). Food Analytical Methods, 2017, 10, 992-998.	1.3	13
178	Calibration strategies to correct for matrix effects in direct analysis of urine by ICP OES: internal standardization and multi-energy calibration. Analytical Methods, 2019, 11, 3401-3409.	1.3	13
179	Determinação e distribuição de ácido ascórbico em três frutos tropicais. Ecletica Quimica, 2002, 27, 393-401.	0.2	13
180	Analytical performance of an inductively coupled plasma optical emission spectrometry with Dual View configuration. Journal of the Brazilian Chemical Society, 2003, 14, 310-315.	0.6	12

#	Article	IF	CITATIONS
181	Evaluation of inductively coupled plasma optical emission spectrometers with axial configuration: interfaces with end-on gas and shear gas. Microchemical Journal, 2004, 77, 185-190.	2.3	12
182	Termogravimetria: um novo enfoque para a clássica determinação de cálcio em cascas de ovos. Quimica Nova, 2009, 32, 1661-1666.	0.3	12
183	Compensation of inorganic acid interferences in ICP-OES and ICP-MS using a Flow Blurring® multinebulizer. Journal of Analytical Atomic Spectrometry, 2014, 29, 1218-1227.	1.6	12
184	High pressure microwave-assisted flow digestion system using a large volume reactor-feasibility for further analysis by inductively coupled plasma-based techniques. Journal of Analytical Atomic Spectrometry, 2015, 30, 1898-1905.	1.6	12
185	Fast and simple flow-batch extraction procedure for screening of macro and micronutrients in dried plant leaves by ICP OES. Microchemical Journal, 2017, 134, 27-34.	2.3	12
186	Padronização interna em espectrometria de absorção atômica. Quimica Nova, 2003, 26, 249-252.	0.3	11
187	Arsenic as internal standard to correct for interferences in the determination of antimony by hydride generation in situ trapping graphite furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 759-763.	1.5	11
188	Multi-Wavelength Determination of Cobalt by Tungsten Coil Atomic Emission Spectrometry. Analytical Letters, 2010, 43, 1723-1733.	1.0	11
189	Elemental impurities analysis in name-brand and generic omeprazole drug samples. Heliyon, 2020, 6, e03359.	1.4	11
190	Análise exploratória dos teores de constituintes inorgânicos em sucos e refrigerantes de uva. Ecletica Quimica, 2002, 27, 77-90.	0.2	11
191	A critical evaluation of the graphite furnace conditions for the direct determination of chromium in urine. Fresenius' Journal of Analytical Chemistry, 1999, 364, 333-337.	1.5	10
192	Polaronic ferromagnetism in conducting polymers. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 2023-2025.	1.0	10
193	Determination of vanadium in urine by electrothermal atomic absorption spectrometry using hot injection and preconcentration into the graphite tube. Journal of the Brazilian Chemical Society, 2004, 15, 676-681.	0.6	10
194	Microwave Single Vessel Acid-Vapor Extraction: Effect of Experimental Parameters on Co and Fe Determination in Biological Samples. Mikrochimica Acta, 2004, 144, 81-85.	2.5	10
195	Highâ€Throughput Microwaveâ€Assisted Digestion and Extraction Procedures for Agricultural Materials. Communications in Soil Science and Plant Analysis, 2007, 38, 2333-2345.	0.6	10
196	Indirect determination of iodide by tungsten coil atomic emission spectrometry. Microchemical Journal, 2009, 93, 242-246.	2.3	10
197	Determinação de arsênio em amostras da cadeia produtiva de frangos de corte por espectrometria de absorção atômica com forno de grafite. Quimica Nova, 2011, 34, 49-52.	0.3	10
198	Critical evaluation of internal standardization in ICP tandem mass spectrometry and feasibility of the oxygen reaction for boron determination in plants. Journal of Analytical Atomic Spectrometry, 2016, 31, 1179-1184.	1.6	10

#	Article	IF	CITATIONS
199	Greening microwave-assisted acid digestion of animal feed samples. Analytical Methods, 2019, 11, 5857-5863.	1.3	10
200	Physiological responses of <i>Chlorella sorokiniana</i> to copper nanoparticles. Environmental Toxicology and Chemistry, 2019, 38, 387-395.	2.2	10
201	Discriminação geogrÃ;fica de Ã;guas minerais do Estado de São Paulo através da anÃ;lise exploratória. Ecletica Quimica, 2002, 27, 91-102.	0.2	10
202	A Flow Injection Spectrophotometric Determination of Ammonium in Natural Water. Journal of the Brazilian Chemical Society, 1995, 6, 327-330.	0.6	10
203	An overview of sample preparation procedures for determination of elemental impurities in medicines. Microchemical Journal, 2022, 175, 107189.	2.3	10
204	Effects of Solution Physical Properties on Copper and Chromium Signals in Flame Atomic Absorption Spectrometry. Journal of Chemical Education, 1996, 73, 982.	1.1	9
205	Direct determination of chromium in gelatine by graphite furnace atomic absorption spectrophotometry. Food Chemistry, 1999, 64, 429-433.	4.2	9
206	Analytical Characteristics of a Continuum-Source Tungsten Coil Atomic Absorption Spectrometer. Analytical Sciences, 2005, 21, 1009-1013.	0.8	9
207	Internal standardization in graphite furnace atomic absorption spectrometry: Comparative use of As and Ge to minimize matrix effects on Se determination in milk. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 681-686.	1.5	9
208	Multivariate Classification of Cigarettes According to Their Elemental Content Determined by Inductively Coupled Plasma Optical Emission Spectrometry. Analytical Sciences, 2007, 23, 435-438.	0.8	9
209	Assessment of Polyatomic Interferences Elimination Using a Collision Reaction Interface (CRI) for Inorganic Analysis of Fuel Ethanol by ICP-QMS. Analytical Letters, 2012, 45, 1111-1121.	1.0	9
210	Evaluation of a Collision-Reaction Interface (CRI) for Carbon Effect Correction on Chromium Determination in Environmental Samples by ICP-MS. Analytical Letters, 2012, 45, 2845-2855.	1.0	9
211	Direct analysis of deodorants for determination of metals by inductively coupled plasma optical emission spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155, 247-252.	1.4	9
212	Digestão de óleo lubrificante encapsulado em forno de microondas com radiação focalizada por adição de amostra ao reagente pr©-aquecido. Quimica Nova, 2006, 29, .	0.3	9
213	A fast microwave-assisted, acid-vapor, steam-cleaning procedure for autosampler cups. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 769-771.	1.5	8
214	Interferences in Thermospray Flame Furnace AAS: Co and Mn Behavior. Spectroscopy Letters, 2008, 41, 354-360.	0.5	8
215	Strategies to improve accuracy and sensitivity in phosphorus determinations by inductively coupled plasma quadrupole mass spectrometry. Journal of the Brazilian Chemical Society, 2012, 23, 786-791.	0.6	8
216	The interference standard method: evidence of principle, potentialities and limitations. Journal of Analytical Atomic Spectrometry, 2014, 29, 1258-1264.	1.6	8

#	Article	IF	CITATIONS
217	Investigation of analyte losses using microwave-assisted sample digestion and closed vessels with venting. Talanta, 2016, 160, 354-359.	2.9	8
218	Determination of ultra-trace levels of Mo in plants by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Microchemical Journal, 2017, 133, 567-571.	2.3	8
219	Microwave induced plasma optical emission spectrometry for multielement determination in instant soups. Journal of Food Composition and Analysis, 2020, 86, 103376.	1.9	8
220	Space charge effects and internal standardization in a four ion lenses interface: What is changing in quadrupole inductively coupled plasma mass spectrometry?. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105825.	1.5	8
221	Avaliação de ICP OES com configuração axial ou radial para determinação de iodo em sal de cozinha. Quimica Nova, 2012, 35, 1299-1305.	0.3	8
222	Is MIP-OES a suitable alternative to ICP-OES for trace element analysis?. Journal of Analytical Atomic Spectrometry, 2022, 37, 966-984.	1.6	8
223	Thermogravimetric investigations on the mechanism of decomposition of Pb compounds on a tungsten surface. Thermochimica Acta, 2000, 362, 161-168.	1.2	7
224	Focused-microwave-assisted reaction in flow injection spectrophotometry: a new liquid–vapor separation chamber for determination of reducing sugars in wine. Talanta, 2001, 55, 677-684.	2.9	7
225	Old and New Flavors of Flame (Furnace) Atomic Absorption Spectrometry. International Journal of Spectroscopy, 2011, 2011, 1-30.	1.4	7
226	Chemical modification in atomic emission: Determination of V in lubricant oils by tungsten coil atomic emission spectrometry. Microchemical Journal, 2014, 115, 58-62.	2.3	7
227	Development of an Alkaline Method for the Determination of Cu, Mo, and Zn in Beef Samples. Food Analytical Methods, 2021, 14, 156-164.	1.3	7
228	Determinação direta de crômio em açúcar e leite por espectrometria de absorção atômica com atomização eletrotérmica em forno de grafite. Quimica Nova, 2000, 23, 185-190.	0.3	7
229	Dispersive liquid–liquid microextraction of Cd, Hg and Pb from medicines prior to ICP OES determination according to the United States Pharmacopeia. Analytical Methods, 2021, 13, 5670-5678.	1.3	7
230	Reaction kinetics in a flow-injection spectrophotometric experiment: A laboratory exercise. Journal of Chemical Education, 1991, 68, 966.	1.1	6
231	Determination of Ytterbium in Digesta and Animal Faeces by Electrothermal Atomic Absorption Spectrometry. Journal of Analytical Atomic Spectrometry, 1997, 12, 475-478.	1.6	6
232	Flow injection spectrophotometric determination of nitrate in electrolyte of lead-acid batteries. Talanta, 1997, 45, 265-271.	2.9	6
233	Development of hardware and software for on-line sample preparation using sequential-injection analysis. Laboratory Robotics and Automation, 2000, 12, 246-252.	0.3	6
234	Tungsten Permanent Chemical Modifier for Fast Estimation of Se Contents in Soil by Graphite Furnace Atomic Absorption Spectrometry. Journal of Agricultural and Food Chemistry, 2003, 51, 3920-3923.	2.4	6

#	Article	IF	CITATIONS
235	Experimentos simples usando fotometria de chama para ensino de princÃpios de espectrometria atômica em cursos de quÃmica analÃtica. Quimica Nova, 2004, 27, 832-836.	0.3	6
236	Experimentos didÃ _i ticos envolvendo radiação microondas. Quimica Nova, 2004, 27, 1012-1015.	0.3	6
237	Enzymatic proteolysis and in situ digestion as strategies to determine Cs and Sr in fish by tungsten coil atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 2082.	1.6	6
238	In situ digestion for the determination of Ca in beverages by tungsten coil atomic emission spectrometry. Talanta, 2012, 97, 285-290.	2.9	6
239	Evaluation of atomizer conditioning and pyrolysis and atomization temperature control to improve procedures based on tungsten coil atomic emission spectrometry. Microchemical Journal, 2013, 110, 758-763.	2.3	6
240	Evaluation of Mg and Mn determination in water and plants using continuum source tungsten coil atomic fluorescence spectrometry. Microchemical Journal, 2014, 117, 250-254.	2.3	6
241	Characterization of Synchronous Vertical Dual View Inductively Coupled Plasma Optical Emission Spectrometer with Application for Water Analysis. Analytical Letters, 2016, 49, 2092-2098.	1.0	6
242	Performance evaluation of a high-pressure microwave-assisted flow digestion system for juice and milk sample preparation. Analytical and Bioanalytical Chemistry, 2017, 409, 4449-4458.	1.9	6
243	Análise de suspensões de argilas por espectrometria de emissão óptica com plasma induzido com configuração axial. Quimica Nova, 2002, 25, 1194-1196.	0.3	6
244	Clay and refractory materials slurries in inductively coupled plasma optical emission spectrometry: effects of mechanochemical synthesis on emission intensities of analytes. Journal of the Brazilian Chemical Society, 2005, 16, 372-380.	0.6	5
245	Improvement of sensitivity in flow analysis by exploiting a multi-reversed software-assisted system. Talanta, 2007, 73, 400-403.	2.9	5
246	Evaluation of metabisulfite and a commercial steel wool for removing chromium(VI) from wastewater. Environmental Chemistry Letters, 2010, 8, 73-77.	8.3	5
247	Focused-microwave-induced combustion: investigation of KClO3 thermal decomposition as O2 source. Analytical Methods, 2011, 3, 1688.	1.3	5
248	Cobalt as chemical modifier to improve chromium sensitivity and minimize matrix effects in tungsten coil atomic emission spectrometry. Analytica Chimica Acta, 2013, 780, 7-12.	2.6	5
249	Investigation of the effect of addition of calcium stearate on the properties of low-density polyethylene/poly(ε-caprolactone) blends. Journal of Materials Science, 2014, 49, 1544-1555.	1.7	5
250	Magnesium nitrate as a chemical modifier to improve sensitivity in manganese determination in plant materials by tungsten coil atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2014, 29, 1499-1503.	1.6	5
251	Flow-based solid sample preparation: Advantages, limitations, and challenges. TrAC - Trends in Analytical Chemistry, 2019, 118, 677-685.	5.8	5
252	Evaluation of recycle and reuse of nitric acid from sample digests by sub-boiling distillation. Microchemical Journal, 2020, 157, 105080.	2.3	5

#	Article	IF	CITATIONS
253	Especiação redox de cromo em solo acidentalmente contaminado com solução sulfocrômica. Quimica Nova, 2008, 31, 1450-1454.	0.3	5
254	Especiação de cromo em cimentos e derivados de cimento brasileiros. Quimica Nova, 2009, 32, 2094-2097.	0.3	5
255	Analytical performance of an inductively coupled plasma optical emission spectrometry with dual view configuration. Journal of the Brazilian Chemical Society, 2003, 14, 666-666.	0.6	5
256	Evaluation of a continuum source tungsten coil atomic absorption spectrometer: a study of Zn behavior. Journal of the Brazilian Chemical Society, 2005, 16, 639-642.	0.6	5
257	"Half-Sandwichâ€∤Rull Anticancer Complexes Containing Triphenylphosphine and p-Substituted Benzoic Acids. Journal of the Brazilian Chemical Society, 0, , .	0.6	5
258	Flow Injection Analysis in the Undergraduate Laboratory. The Chemical Educator, 1999, 4, 179-182.	0.0	4
259	Direct determination of iron in sand using solid sampling graphite furnace atomic absorption spectrometry. Mikrochimica Acta, 2008, 161, 109-114.	2.5	4
260	Determinação direta de Ca, Mg, Mn e Zn em amostras de leite de búfala da Ilha de Marajó por espectrometria de absorção atômica com chama (FAAS). Quimica Nova, 2009, 32, .	0.3	4
261	Flow Injection Amperometric Determination of Acid-Available Cyanide: A Study of Sulfide and Thiocyanate Interferences. Journal of the Brazilian Chemical Society, 1994, 5, 91-95.	0.6	4
262	Sequential determinations by confluent reagent introduction in the sample loop: system characteristics and applications. Analytica Chimica Acta, 1998, 366, 281-285.	2.6	3
263	Modern Strategies for Environmental Sample Preparation and Analysis. , 2004, , 37-68.		3
264	Multi-element determination in acid-digested soy protein formulations by inductively coupled plasma–optical emission spectrometry. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2008, 25, 616-621.	1.1	3
265	Sampling and Sample Homogeneity as Introductory Topics in Analytical Chemistry Undergraduate Courses. Spectroscopy Letters, 2008, 41, 251-257.	0.5	3
266	Elemental Analysis of Phytotherapeutic Products by Inductively Coupled Plasma–Tandem Mass Spectrometry. Analytical Letters, 2017, 50, 842-852.	1.0	3
267	Qualitative and Quantitative Chemical Investigation of Orthopedic Alloys by Combining Wet Digestion, Spectroanalytical Methods and Direct Solid Analysis. Journal of the Brazilian Chemical Society, 2017, , .	0.6	3
268	Application of a Flow-Batch Extraction System for On-Line Determination of Minerals in Animal Foods by Inductively Coupled Plasma Optical Emission Spectrometry. Food Analytical Methods, 2018, 11, 1243-1249.	1.3	3
269	Evaluation of Partial Digestion as a Strategy for Elemental Analysis of Inorganic Samples by Inductively Coupled Plasma–Optical Emission Spectrometry (ICP OES)—A Proof of Concept Study. Analytical Letters, 2022, 55, 505-515.	1.0	3
270	DETERMINATION OF Cd IN MUSSELS AND NON-FAT MILK POWDER BY FLOW INJECTION - FLAME ATOMIC ABSORPTION SPECTROPHOTOMETRY (FI-FAAS) WITH ON-LINE EXTRACTION BY A CHELATING RESIN. Journal of the Chilean Chemical Society, 2002, 47, .	0.1	3

#	Article	IF	CITATIONS
271	Honoring our heritage and moving ahead. Journal of the Brazilian Chemical Society, 2013, 24, 1-2.	0.6	3
272	Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometrÃa de absorción atómica. Quimica Nova, 1998, 21, 490-492.	0.3	2
273	Automation in flow-injection analysis: Simultaneous determination of chloride and total iron. Laboratory Robotics and Automation, 1999, 11, 260-265.	0.3	2
274	Evaluation of a rapid semi-quantitative analysis approach using inductively coupled plasma optical emission spectrometry with axial viewing. Microchemical Journal, 2007, 86, 60-64.	2.3	2
275	Diluted Acids in Microwave-Assisted Wet Digestion. , 2014, , 179-204.		2
276	Evaluation of Inductively Coupled Plasma Tandem Mass Spectrometry for Determination of As in Agricultural Inputs with High REE Contents. Journal of the Brazilian Chemical Society, 2016, , .	0.6	2
277	Study of macro and microelements in fish from the Cienfuegos Bay. Relationship with its content in sediments. Environmental Monitoring and Assessment, 2017, 189, 427.	1.3	2
278	Fit-for-Purpose ICP-MS Procedure Supporting Brazilian Regulations on Inorganic Constituents in Fresh and Saline Waters. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
279	Microwave-Assisted Acid Digestion: Evaluation of Reaction Vessel Design and Performance. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
280	Evaluation of Mineral Profile and Dietary Reference Intake from Collagen by ICP-Based Techniques. Food Analytical Methods, 2021, 14, 1860-1874.	1.3	2
281	Determination of Cd, Pb and Se in beef samples using aerosol dilution by ICP-MS. Journal of Food Measurement and Characterization, 2021, 15, 4105-4111.	1.6	2
282	A Glimpse of Recent Developments in Brazilian Analytical Chemistry. Analytical Letters, 2008, 41, 1494-1546.	1.0	1
283	Construção de espectrômetro de emissão atômica com atomização eletrotérmica em filamento de tungstênio (WCAES). Quimica Nova, 2010, 33, 2266-2271.	0.3	1
284	Evaluation of Tungsten Coil Atomic Emission Spectrometry for the Direct Determination of Al in Tea Infusions and Iced Tea. Food Analytical Methods, 2016, 9, 624-629.	1.3	1
285	Perspective: What constitutes a quality paper in atomic spectrometry. Talanta Open, 2021, 3, 100045.	1.7	1
286	Decomposição de argilas em forno de microondas e determinação simultânea dos seus constituintes principais por espectrometria de emissão óptica em plasma indutivamente acoplado. Quimica Nova, 2005, 28, 137-140.	0.3	1
287	Mathematical equation correction to spectral and transport interferences in high-resolution continuum source flame atomic absorption spectrometry: determination of lead in phosphoric acid. Ecletica Quimica, 2010, 35, 19-24.	0.2	1
288	QuÃmica analÃŧica brasileira durante os 25 anos da SBQ: contexto atual e senso comum. Quimica Nova, 0, 25, 61-65.	0.3	1

#	Article	IF	CITATIONS
289	Extração de micronutrientes em solo com solução de DTPA em forno de microondas com radiação focalizada. Revista Brasileira De Ciencia Do Solo, 2002, 26, 789-794.	0.5	ο
290	Integração de técnicas analÃŧicas e proposta de experimentos para cursos de graduação em análise instrumental: uso de espectrômetro de absorção atômica para medidas de absorção molecular. Quimica Nova, 2006, 29, 868-871.	0.3	0
291	Thirteenth National Analytical Chemistry Meeting and First Ibero–American Analytical Chemistry Congress (Brazil, 2005). Microchemical Journal, 2006, 82, 123-126.	2.3	Ο
292	Analytical chemistry in Brazil: healthy and growing. Journal of the Brazilian Chemical Society, 2009, 20, .	0.6	0
293	Graduate Programs in Chemistry in Brazil. Journal of the Brazilian Chemical Society, 2013, , .	0.6	О
294	Comparative Analysis of the Distribution of Copper in Green and Brown Brazilian Propolis Extracts. Chromatographia, 2018, 81, 623-629.	0.7	0
295	Outstanding Reviewers for <i>Journal of Analytical Atomic Spectrometry</i> in 2017. Journal of Analytical Atomic Spectrometry, 2018, 33, 683-683.	1.6	О
296	Determination of Macro, Micro and Toxic Elements using Argon-Based Plasma Spectroanalytical Methods in order to support Brazilian Regulations on Inorganic Constituents in Infant Foods. Brazilian Journal of Analytical Chemistry, 2021, 8, .	0.3	0
297	Análise quÃmica inorgânica de leite esimulação do reagente CFA-C. Ecletica Quimica, 2002, 27, 61-76.	0.2	Ο
298	Journal Impact Factor: Expectations and Hopes. Journal of the Brazilian Chemical Society, 2013, , .	0.6	0
299	Refreshing Guidelines for Peer Reviewers. Journal of the Brazilian Chemical Society, 2013, , .	0.6	Ο
300	From Submission to Publication: How We Work with Your Manuscript. Journal of the Brazilian Chemical Society, 2013, , .	0.6	0
301	New Times Ahead - Let us Strengthen our Values. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
302	Good times ahead - Enjoy the New Year!. Journal of the Brazilian Chemical Society, 2014, , .	0.6	0
303	Looking Forward to Improving Gender Equality in Science. Journal of the Brazilian Chemical Society, 2014, , .	0.6	Ο
304	Who is Reading and Who is Citing the JBCS?. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
305	Sinais de fundo em análise instrumental: uma discussão essencial em cursos de graduação. Quimica Nova, 0, , .	0.3	0
306	DETERMINAÇÃO DE SÓDIO EM CACHAÇA POR ESPECTROMETRIA DE EMISSÃO ATÔMICA: EFEITO DAS PROPRIEDADES FçICO-QUIMICAS DA SOLUÇÃO. Quimica Nova, 0, , .	0.3	0