## **Thomas Binz**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1980233/publications.pdf Version: 2024-02-01



THOMAS RINZ

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. International Journal of Molecular Sciences, 2022, 23, 4355.                  | 4.1 | 6         |
| 2  | Ability of human SNAP-23 to generate high molecular weight SDS-resistant ternary SNARE complexes is influenced by C-terminal coil content. Biochemistry and Biophysics Reports, 2021, 28, 101150. | 1.3 | 0         |
| 3  | Role of the Sec22b–E-Syt complex in neurite growth and ramification. Journal of Cell Science, 2020, 133, .                                                                                        | 2.0 | 26        |
| 4  | Engineering an Effective Human SNAP-23 Cleaving Botulinum Neurotoxin A Variant. Toxins, 2020, 12,<br>804.                                                                                         | 3.4 | 3         |
| 5  | Duplication of clostridial binding domains for enhanced macromolecular delivery into neurons.<br>Toxicon: X, 2020, 5, 100019.                                                                     | 2.9 | 0         |
| 6  | Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA. Pathogens and Disease, 2018, 76, .                                                 | 2.0 | 12        |
| 7  | Botulinum Neurotoxin F Subtypes Cleaving the VAMP-2 Q58–K59 Peptide Bond Exhibit Unique Catalytic<br>Properties and Substrate Specificities. Toxins, 2018, 10, 311.                               | 3.4 | 6         |
| 8  | Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals.<br>Cellular Microbiology, 2017, 19, e12647.                                                        | 2.1 | 39        |
| 9  | A Cell Line for Detection of Botulinum Neurotoxin Type B. Frontiers in Pharmacology, 2017, 8, 796.                                                                                                | 3.5 | 21        |
| 10 | Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathogens, 2017, 13, e1006567.                                     | 4.7 | 27        |
| 11 | The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain.<br>Scientific Reports, 2016, 6, 30257.                                                               | 3.3 | 84        |
| 12 | Identification and Characterization of Botulinum Neurotoxin A Substrate Binding Pockets and Their<br>Re-Engineering for Human SNAP-23. Journal of Molecular Biology, 2016, 428, 372-384.          | 4.2 | 28        |
| 13 | Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma<br>cells. Oncotarget, 2016, 7, 33220-33228.                                                          | 1.8 | 22        |
| 14 | A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins. Scientific<br>Reports, 2015, 5, 17513.                                                                         | 3.3 | 29        |
| 15 | The thioredoxin reductase – Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon, 2015, 107, 32-36.    | 1.6 | 26        |
| 16 | Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochemical Pharmacology, 2015, 98, 522-530.                          | 4.4 | 33        |
| 17 | Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins. Cell Reports, 2014, 8, 1870-1878.                   | 6.4 | 90        |
| 18 | Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A.<br>FEBS Letters, 2014, 588, 1087-1093.                                                     | 2.8 | 40        |

THOMAS BINZ

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Botulinum proteaseâ€cleaved SNARE fragments induce cytotoxicity in neuroblastoma cells. Journal of<br>Neurochemistry, 2014, 129, 781-791.                                                                                                                   | 3.9 | 14        |
| 20 | The thioredoxin reductaseâ€ŧhioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Letters, 2013, 587, 150-155.                                                                            | 2.8 | 55        |
| 21 | Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type<br>B enzymatic domain. FEBS Letters, 2013, 587, 3831-3836.                                                                                             | 2.8 | 33        |
| 22 | Exchanging the minimal cell binding fragments of tetanus neurotoxin in botulinum neurotoxin A and<br>B impacts their toxicity at the neuromuscular junction and central neurons. Toxicon, 2013, 75, 108-121.                                                | 1.6 | 8         |
| 23 | Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochemical and Biophysical Research Communications, 2013, 430, 38-42.                                                        | 2.1 | 30        |
| 24 | Botulinum Neurotoxin G Binds Synaptotagmin-II in a Mode Similar to That of Serotype B: Tyrosine 1186<br>and Lysine 1191 Cause Its Lower Affinity. Biochemistry, 2013, 52, 3930-3938.                                                                        | 2.5 | 21        |
| 25 | Identification of the SV2 protein receptor-binding site of botulinum neurotoxin typeÂE. Biochemical<br>Journal, 2013, 453, 37-47.                                                                                                                           | 3.7 | 43        |
| 26 | Human synaptotagminâ€II is not a high affinity receptor for botulinum neurotoxin B and G: Increased therapeutic dosage and immunogenicity. FEBS Letters, 2012, 586, 310-313.                                                                                | 2.8 | 72        |
| 27 | Clostridial Neurotoxin Light Chains: Devices for SNARE Cleavage Mediated Blockade of<br>Neurotransmission. Current Topics in Microbiology and Immunology, 2012, 364, 139-157.                                                                               | 1.1 | 52        |
| 28 | Clostridial Neurotoxin Light Chains: Devices for SNARE Cleavage Mediated Blockade of Neurotransmission. Current Topics in Microbiology and Immunology, 2012, , 139-157.                                                                                     | 1.1 | 5         |
| 29 | The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside<br>binding sites. Molecular Microbiology, 2011, 81, 143-156.                                                                                            | 2.5 | 64        |
| 30 | Exchange of the H <sub>CC</sub> domain mediating double receptor recognition improves the pharmacodynamic properties of botulinum neurotoxin. FEBS Journal, 2011, 278, 4506-4515.                                                                           | 4.7 | 32        |
| 31 | P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells.<br>Journal of Biological Chemistry, 2011, 286, 11370-11381.                                                                                             | 3.4 | 48        |
| 32 | Clostridial Neurotoxins: Mechanism of SNARE Cleavage and Outlook on Potential Substrate<br>Specificity Reengineering. Toxins, 2010, 2, 665-682.                                                                                                             | 3.4 | 59        |
| 33 | Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a<br>ganglioside-dependent manner. Biochemical Journal, 2010, 431, 207-216.                                                                                           | 3.7 | 71        |
| 34 | SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18197-18201.                                                                          | 7.1 | 47        |
| 35 | Cell entry strategy of clostridial neurotoxins. Journal of Neurochemistry, 2009, 109, 1584-1595.                                                                                                                                                            | 3.9 | 175       |
| 36 | Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulationâ€dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. Journal of Neurochemistry, 2009, 110, 1942-1954. | 3.9 | 146       |

THOMAS BINZ

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Substrate Recognition Mechanism of VAMP/Synaptobrevin-cleaving Clostridial Neurotoxins. Journal of Biological Chemistry, 2008, 283, 21145-21152.                                                                                    | 3.4  | 52        |
| 38 | Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the<br>double-receptor concept. Proceedings of the National Academy of Sciences of the United States of<br>America, 2007, 104, 359-364. | 7.1  | 169       |
| 39 | Structural and Biochemical Studies of Botulinum Neurotoxin Serotype C1 Light Chain Protease:<br>Implications for Dual Substrate Specificity <sup>,</sup> . Biochemistry, 2007, 46, 10685-10693.                                     | 2.5  | 46        |
| 40 | The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves.<br>FEBS Letters, 2006, 580, 2011-2014.                                                                                           | 2.8  | 285       |
| 41 | Identification of the Amino Acid Residues Rendering TI-VAMP Insensitive toward Botulinum Neurotoxin<br>B. Journal of Molecular Biology, 2006, 357, 574-582.                                                                         | 4.2  | 25        |
| 42 | Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature, 2006, 444, 1092-1095.                                                                                                            | 27.8 | 219       |
| 43 | Analysis of Active Site Residues of Botulinum Neurotoxin E by Mutational, Functional, and Structural<br>Studies:  Glu335Gln Is an Apoenzyme. Biochemistry, 2005, 44, 8291-8302.                                                     | 2.5  | 36        |
| 44 | Structural Analysis of Botulinum Neurotoxin Serotype F Light Chain:  Implications on Substrate<br>Binding and Inhibitor Design. Biochemistry, 2005, 44, 11758-11765.                                                                | 2.5  | 64        |
| 45 | Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins. Trends in Neurosciences, 2005, 28, 446-452.                                                                                                           | 8.6  | 113       |
| 46 | Structural analysis of the catalytic domain of tetanus neurotoxin. Toxicon, 2005, 45, 929-939.                                                                                                                                      | 1.6  | 42        |
| 47 | Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G. Journal of Biological Chemistry, 2004, 279, 30865-30870.                                                                                            | 3.4  | 220       |
| 48 | Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. Journal of Neurochemistry, 2004, 91, 1461-1472.                                 | 3.9  | 95        |
| 49 | Structural Analysis of Botulinum Neurotoxin Type E Catalytic Domain and Its Mutant Glu212→Gln<br>Reveals the Pivotal Role of the Glu212 Carboxylate in the Catalytic Pathwayâ€,‡. Biochemistry, 2004, 43,<br>6637-6644.             | 2.5  | 82        |
| 50 | Regulation of Releasable Vesicle Pool Sizes by Protein Kinase A-Dependent Phosphorylation of SNAP-25.<br>Neuron, 2004, 41, 417-429.                                                                                                 | 8.1  | 204       |
| 51 | The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Molecular Microbiology, 2003, 51, 631-643.                                      | 2.5  | 205       |
| 52 | Two Carbohydrate Binding Sites in the HCC-domain of Tetanus Neurotoxin are Required for Toxicity.<br>Journal of Molecular Biology, 2003, 326, 835-847.                                                                              | 4.2  | 127       |
| 53 | Arg362and Tyr365of the Botulinum Neurotoxin Type A Light Chain Are Involved in Transition State<br>Stabilizationâ€. Biochemistry, 2002, 41, 1717-1723.                                                                              | 2.5  | 104       |
| 54 | The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1627-1632.                                                 | 7.1  | 156       |

Thomas Binz

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Protein Kinase C-Dependent Phosphorylation of Synaptosome-Associated Protein of 25 kDa at<br>Ser <sup>187</sup> Potentiates Vesicle Recruitment. Journal of Neuroscience, 2002, 22, 9278-9286. | 3.6  | 167       |
| 56 | Probing the Mechanistic Role of Glutamate Residue in the Zinc-Binding Motif of Type A Botulinum<br>Neurotoxin Light Chainâ€. Biochemistry, 2000, 39, 2399-2405.                                | 2.5  | 84        |
| 57 | Proteolysis of SNAPâ€25 Isoforms by Botulinum Neurotoxin Types A, C, and E. Journal of Neurochemistry, 1999, 72, 327-337.                                                                      | 3.9  | 186       |
| 58 | Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature<br>Neuroscience, 1998, 1, 192-200.                                                                   | 14.8 | 313       |
| 59 | Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature, 1993, 364, 346-349.                                                      | 27.8 | 489       |
| 60 | Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature, 1993, 365, 160-163.                                                                                           | 27.8 | 1,145     |
| 61 | Tetanus toxin action: Inhibition of neurotransmitter release linked to synaptobrevin proteolysis.<br>Biochemical and Biophysical Research Communications, 1992, 189, 1017-1023.                | 2.1  | 316       |