Adam J Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979965/publications.pdf

Version: 2024-02-01

	87401	150775
4,305	40	59
citations	h-index	g-index
62	60	60.47
63	63	6947
docs citations	times ranked	citing authors
	4,305 citations 63 docs citations	4,305 40 citations h-index 63 63

#	Article	IF	CITATIONS
1	Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nature Metabolism, 2021, 3, 394-409.	5.1	48
2	Dietary Essential Amino Acid Restriction Promotes Hyperdipsia via Hepatic FGF21. Nutrients, 2021, 13, 1469.	1.7	5
3	Effects of Short-Term Dietary Protein Restriction on Blood Amino Acid Levels in Young Men. Nutrients, 2020, 12, 2195.	1.7	5
4	Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nature Communications, 2020, 11 , 2894 .	5.8	71
5	Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients, 2019, 11, 2623.	1.7	37
6	Role of Peptide Hormones in the Adaptation to Altered Dietary Protein Intake. Nutrients, 2019, 11, 1990.	1.7	9
7	Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nature Metabolism, 2019, 1, 532-545.	5.1	207
8	Dietary protein and age-dependent female fertility: FGF21 trumps mTORC1. EBioMedicine, 2019, 41, 32-33.	2.7	1
9	Platelet GPlbî \pm is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	15.2	259
10	The glucocorticoid receptor in brown adipocytes is dispensable for control of energy homeostasis. EMBO Reports, 2019, 20, e48552.	2.0	16
11	Dietary protein dilution limits dyslipidemia in obesity through FGF21-driven fatty acid clearance. Journal of Nutritional Biochemistry, 2018, 57, 189-196.	1.9	31
12	Inhibition of Endothelial Notch Signaling Impairs Fatty Acid Transport and Leads to Metabolic and Vascular Remodeling of the Adult Heart. Circulation, 2018, 137, 2592-2608.	1.6	103
13	Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncolmmunology, 2018, 7, e1486353.	2.1	62
14	Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution. Molecular Metabolism, 2017, 6, 873-881.	3.0	54
15	Fastingâ€induced liver <scp>GADD</scp> 45β restrains hepatic fatty acid uptake and improves metabolic health. EMBO Molecular Medicine, 2016, 8, 654-669.	3.3	32
16	Mouse redox histology using genetically encoded probes. Science Signaling, 2016, 9, rs1.	1.6	62
17	Control of diabetic hyperglycaemia and insulin resistance through TSC22D4. Nature Communications, 2016, 7, 13267.	5.8	27
18	A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution. Journal of Clinical Investigation, 2016, 126, 3263-3278.	3.9	138

#	Article	IF	CITATIONS
19	Transcriptional coâ€factor Transducin betaâ€like (<scp>TBL</scp>) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Molecular Medicine, 2015, 7, 1048-1062.	3.3	12
20	micro <scp>RNA</scp> â€379 couples glucocorticoid hormones to dysfunctional lipid homeostasis. EMBO Journal, 2015, 34, 344-360.	3.5	43
21	Molecular regulation of urea cycle function by the liver glucocorticoid receptor. Molecular Metabolism, 2015, 4, 732-740.	3.0	44
22	Mice lacking neutral amino acid transporter BOAT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Molecular Metabolism, 2015, 4, 406-417.	3.0	71
23	Glucocorticoid hormones and energy homeostasis. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 117-128.	0.3	52
24	Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Molecular Metabolism, 2014, 3, 742-753.	3.0	65
25	$11\hat{l}^2$ -Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice. Molecular Metabolism, 2014, 3, 554-564.	3.0	11
26	Browning of White Adipose Tissue Uncouples Glucose Uptake from Insulin Signaling. PLoS ONE, 2014, 9, e110428.	1.1	42
27	Metabolic control through glucocorticoid hormones: An update. Molecular and Cellular Endocrinology, 2013, 380, 65-78.	1.6	109
28	Hepatic Deficiency in Transcriptional Cofactor TBL1 Promotes Liver Steatosis and Hypertriglyceridemia. Cell Metabolism, 2011, 13, 389-400.	7.2	49
29	Molecular Control of Systemic Bile Acid Homeostasis by the Liver Glucocorticoid Receptor. Cell Metabolism, 2011, 14, 123-130.	7.2	77
30	Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. Journal of Lipid Research, 2011, 52, 699-711.	2.0	67
31	Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E761-E770.	1.8	70
32	Protein kinase Cα activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1808-R1814.	0.9	21
33	Antioxidant Supplementation Does Not Alter Endurance Training Adaptation. Medicine and Science in Sports and Exercise, 2010, 42, 1388-1395.	0.2	150
34	Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E257-E269.	1.8	107
35	Control of Adipose Tissue Inflammation Through TRB1. Diabetes, 2010, 59, 1991-2000.	0.3	58
36	Role of glucocorticoids and the glucocorticoid receptor in metabolism: Insights from genetic manipulations. Journal of Steroid Biochemistry and Molecular Biology, 2010, 122, 10-20.	1.2	97

#	Article	IF	Citations
37	Knockout of the predominant conventional PKC isoform, PKC $\hat{l}\pm$, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E340-E348.	1.8	21
38	Dysregulation of Glycogen Synthase COOH- and NH2-Terminal Phosphorylation by Insulin in Obesity and Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4547-4556.	1.8	64
39	Regulatory mechanisms of skeletal muscle protein turnover during exercise. Journal of Applied Physiology, 2009, 106, 1702-1711.	1.2	50
40	Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1228-R1237.	0.9	31
41	Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E924-E934.	1.8	78
42	Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R326-R333.	0.9	53
43	A Ca ²⁺ –calmodulin–eEF2K–eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. Journal of Physiology, 2009, 587, 1547-1563.	1.3	85
44	How is AMPK activity regulated in skeletal muscles during exercise?. Frontiers in Bioscience - Landmark, 2008, Volume, 5589.	3.0	37
45	Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. Journal of Applied Physiology, 2008, 104, 1045-1055.	1.2	113
46	AS160 phosphorylation is associated with activation of $\hat{l}\pm2\hat{l}^22\hat{l}^31$ - but not $\hat{l}\pm2\hat{l}^22\hat{l}^33$ -AMPK trimeric complex in skeletal muscle during exercise in humans. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E715-E722.	1.8	115
47	Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E286-E292.	1.8	119
48	Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1308-E1317.	1.8	177
49	Effects of Endurance Exercise Training on Insulin Signaling in Human Skeletal Muscle. Diabetes, 2007, 56, 2093-2102.	0.3	162
50	Regulation and function of Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. Journal of Physiology, 2007, 580, 993-1005.	1.3	30
51	Effect of endurance exercise training on Ca ²⁺ –calmodulinâ€dependent protein kinase II expression and signalling in skeletal muscle of humans. Journal of Physiology, 2007, 583, 785-795.	1.3	69
52	Glucose phosphorylation is/is not a significant barrier to muscle glucose uptake by the working muscle. Journal of Applied Physiology, 2006, 101, 1809-1809.	1.2	1
53	Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. Journal of Physiology, 2006, 574, 889-903.	1.3	198
54	Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. Journal of Physiology, 2005, 569, 223-228.	1.3	83

#	Article	IF	CITATIONS
55	Skeletal Muscle Glucose Uptake During Exercise: How is it Regulated?. Physiology, 2005, 20, 260-270.	1.6	265
56	Effect of exercise on protein kinase C activity and localization in human skeletal muscle. Journal of Physiology, 2004, 561, 861-870.	1.3	48
57	Exercise Increases Ca 2+ –Calmodulinâ€Dependent Protein Kinase II Activity in Human Skeletal Muscle. Journal of Physiology, 2003, 553, 303-309.	1.3	136
58	Effect of prior exercise on glucose metabolism in trained men. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E766-E771.	1.8	56