Chen Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979889/publications.pdf

Version: 2024-02-01

840776 752698 21 509 11 20 citations h-index g-index papers 22 22 22 539 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Stability evaluation of rock slope based on discrete fracture network and discrete element model: a case study for the right bank of Yigong Zangbu Bridge. Acta Geotechnica, 2022, 17, 1423-1441.	5.7	12
2	Sequence Analysis of Ancient River Blocking Events in SE Tibetan Plateau Using Multidisciplinary Approaches. Water (Switzerland), 2022, 14, 968.	2.7	0
3	Identification of the Potential Critical Slip Surface for Fractured Rock Slope Using the Floyd Algorithm. Remote Sensing, 2022, 14, 1284.	4.0	12
4	Comparative Study on Potential Landslide Identification with ALOS-2 and Sentinel-1A Data in Heavy Forest Reach, Upstream of the Jinsha River. Remote Sensing, 2022, 14, 1962.	4.0	12
5	Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data. Journal of Cleaner Production, 2022, 368, 133146.	9.3	16
6	A comparative evaluation of machine learning algorithms and an improved optimal model for landslide susceptibility: a case study. Geomatics, Natural Hazards and Risk, 2021, 12, 1973-2001.	4.3	6
7	Quantitative estimation of debris flow source materials by integrating multi-source data: A case study. Engineering Geology, 2021, 291, 106222.	6.3	47
8	Preliminary Identification of Geological Hazards from Songpinggou to Feihong in Mao County along the Minjiang River Using SBAS-InSAR Technique Integrated Multiple Spatial Analysis Methods. Sustainability, 2021, 13, 1017.	3.2	22
9	A Progressive Framework for Delineating Homogeneous Domains in Complicated Fractured Rock Masses: A Case Study from the Xulong Dam Site, China. Rock Mechanics and Rock Engineering, 2020, 53, 1623-1646.	5.4	12
10	Engineering Classification of Jointed Rock Mass Based on Connectional Expectation: A Case Study for Songta Dam Site, China. Advances in Civil Engineering, 2020, 2020, 1-15.	0.7	2
11	Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing. International Journal of Environmental Research and Public Health, 2019, 16, 2801.	2.6	4
12	Softening Damage Analysis of Gypsum Rock With Water Immersion Time Based on Laboratory Experiment. IEEE Access, 2019, 7, 125575-125585.	4.2	53
13	Mapping debris flow susceptibility based on watershed unit and grid cell unit: a comparison study. Geomatics, Natural Hazards and Risk, 2019, 10, 1648-1666.	4.3	17
14	The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Entropy, 2019, 21, 372.	2.2	22
15	Assessment of check dams' role in flood hazard mapping in a semi-arid environment. Geomatics, Natural Hazards and Risk, 2019, 10, 2239-2256.	4.3	12
16	Identification of structural domains by considering multiple discontinuity characteristics: a case study of the Songta Dam. Bulletin of Engineering Geology and the Environment, 2018, 77, 1589-1598.	3.5	10
17	An Approach to Predict Debris Flow Average Velocity. Water (Switzerland), 2017, 9, 205.	2.7	11
18	Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China. International Journal of Environmental Research and Public Health, 2017, 14, 30.	2.6	22

CHEN CAO

#	Article	IF	CITATIONS
19	Landslide Susceptibility Mapping in Vertical Distribution Law of Precipitation Area: Case of the Xulong Hydropower Station Reservoir, Southwestern China. Water (Switzerland), 2016, 8, 270.	2.7	41
20	Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas. Sustainability, 2016, 8, 948.	3.2	164
21	A multivariate method for identifying structural domain boundaries in a rock mass. Bulletin of Engineering Geology and the Environment, 2015, 74, 1407-1418.	3.5	12