List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chemical Engineering Journal, 2015, 260, 642-648.	6.6	220
2	Polymer supported graphene–CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chemical Engineering Journal, 2016, 283, 816-825.	6.6	82
3	Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresource Technology, 2012, 116, 140-146.	4.8	58
4	Preparation of a novel light-sensitive copolymer and its application in recycling aqueous two-phase systems. Journal of Chromatography A, 2008, 1205, 171-176.	1.8	50
5	Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochemistry, 2020, 94, 329-339.	1.8	32
6	Immobilization of cellulase onto a recyclable thermo-responsive polymer as bioconjugate. Journal of Molecular Catalysis B: Enzymatic, 2016, 128, 39-45.	1.8	30
7	Synthesis of core-shell molecularly imprinted polymers (MIP) for spiramycin I and their application in MIP chromatography. Process Biochemistry, 2018, 70, 168-178.	1.8	27
8	Separation of lysozyme from salted duck egg white by affinity precipitation using pH-responsive polymer with an l-thyroxin ligand. Separation and Purification Technology, 2014, 138, 153-160.	3.9	26
9	Preparation of a novel thermo-sensitive copolymer forming recyclable aqueous two-phase systems and its application in bioconversion of Penicillin G. Separation and Purification Technology, 2010, 75, 156-164.	3.9	25
10	Effects of carbon sources on fungal morphology and lovastatin biosynthesis by submerged cultivation of <i>Aspergillus terreus</i> . Asia-Pacific Journal of Chemical Engineering, 2009, 4, 672-677.	0.8	24
11	Enhancement of Lovastatin Production by Supplementing Polyketide Antibiotics to the Submerged Culture of Aspergillus terreus. Applied Biochemistry and Biotechnology, 2010, 160, 2014-2025.	1.4	24
12	Preparation of core–shell molecular imprinting polymer for lincomycin A and its application in chromatographic column. Process Biochemistry, 2015, 50, 1136-1145.	1.8	23
13	Development of pH-responsive polymer and citrate aqueous two-phase system for extractive bioconversion of cefprozil. Talanta, 2017, 174, 256-264.	2.9	23
14	Computational design of a molecularly imprinted polymer compatible with an aqueous environment for solid phase extraction of chenodeoxycholic acid. Journal of Chromatography A, 2020, 1609, 460490.	1.8	23
15	Effects of divalent metal cations on lovastatin biosynthesis from Aspergillus terreus in chemically defined medium. World Journal of Microbiology and Biotechnology, 2009, 25, 1235-1241.	1.7	20
16	Enzymatic synthesis of Cephalexin in recyclable aqueous two-phase systems composed by two pH responsive polymers. Biochemical Engineering Journal, 2014, 90, 301-306.	1.8	20
17	Synthesis of thermo-responsive polymers recycling aqueous two-phase systems and phase formation mechanism with partition of ε-polylysine. Journal of Chromatography A, 2016, 1472, 44-54.	1.8	20
18	Synthesis of surface molecularly imprinting polymers for cordycepin and its application in separating cordycepin. Process Biochemistry, 2016, 51, 517-527.	1.8	20

#	Article	IF	CITATIONS
19	MoS2 and Fe2O3 co-modify g-C3N4 to improve the performance of photocatalytic hydrogen production. Scientific Reports, 2022, 12, 3261.	1.6	20
20	Concentration of 6-aminopenicillanic acid from penicillin bioconversion solution and its mother liquor by nanofiltration membrane. Biotechnology and Bioprocess Engineering, 2001, 6, 200-204.	1.4	19
21	Effect of chaotropes in reverse micellar extraction of kallikrein. Process Biochemistry, 2012, 47, 229-233.	1.8	19
22	Separation of transglutaminase using aqueous two-phase systems composed of two pH-response polymers. Journal of Chromatography A, 2018, 1555, 106-112.	1.8	19
23	Synthesis of molecularly imprinted polymers based on boronate affinity for diol-containing macrolide antibiotics with hydrophobicity-balanced and pH-responsive cavities. Journal of Chromatography A, 2021, 1642, 461969.	1.8	19
24	Affinity precipitation of cellulase using pH-response polymer with Cibacron Blue F3GA. Separation and Purification Technology, 2013, 102, 136-141.	3.9	18
25	Affinity precipitation of human serum albumin using a thermo-response polymer with an L-thyroxin ligand. BMC Biotechnology, 2013, 13, 109.	1.7	18
26	Preliminary application of light-pH sensitive recycling aqueous two-phase systems to purification of lipase. Process Biochemistry, 2010, 45, 598-601.	1.8	17
27	Effects of porogens on the morphology and enantioselectivity of core–shell molecularly imprinted polymers with ursodeoxycholic acid. Separation and Purification Technology, 2010, 72, 208-216.	3.9	17
28	Preparation of aqueous two-phase systems composed of two pH-response polymers and liquid–liquid extraction of demeclocycline. Journal of Chromatography A, 2012, 1245, 39-45.	1.8	17
29	Polymer-supported graphene–TiO2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light. Journal of Materials Science, 2020, 55, 1577-1591.	1.7	17
30	Extraction of tea polysaccharides (TPS) using anionic reverse micellar system. Separation and Purification Technology, 2014, 122, 306-314.	3.9	16
31	Recyclable aqueous two-phase system based on two pH-responsive copolymers and its application to porcine circovirus type 2 Cap protein purification. Journal of Chromatography A, 2018, 1555, 113-123.	1.8	14
32	Synthesis of pH-responsive polymers forming recyclable aqueous two-phase systems and application to the extraction of demeclocycline. Biochemical Engineering Journal, 2019, 142, 89-96.	1.8	14
33	Prediction of phase diagrams for new pH-thermo sensitive recycling aqueous two-phase systems. Fluid Phase Equilibria, 2010, 298, 206-211.	1.4	13
34	Bioconversion of cephalosporin-G to 7-ADCA in a pH-thermo sensitive recycling aqueous two-phase systems. Process Biochemistry, 2011, 46, 1753-1758.	1.8	13
35	Partitioning of tylosin in recyclable aqueous two-phase systems based on two pH-responsive polymers. Process Biochemistry, 2019, 87, 204-212.	1.8	13
36	Synthesis and application of two light-sensitive copolymers forming recyclable aqueous two-phase systems. Process Biochemistry, 2010, 45, 1928-1936.	1.8	12

#	Article	IF	CITATIONS
37	Biodegradation of cellulose in novel recyclable aqueous two-phase systems with water-soluble immobilized cellulase. Process Biochemistry, 2012, 47, 1998-2004.	1.8	12
38	Biodegradation of cellulose by β-glucosidase and cellulase immobilized on a pH-responsive copolymer. Biotechnology and Bioprocess Engineering, 2014, 19, 829-837.	1.4	12
39	Synthesis of two thermo-responsive copolymers forming recyclable aqueous two-phase systems and its application in cefprozil partition. Journal of Chromatography A, 2014, 1349, 30-36.	1.8	12
40	Novel polymer supported graphene and molybdenum sulfide as highly efficient cocatalyst for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 18105-18114.	3.8	12
41	Partition of spiramycin in a recyclable aqueous two-phase system based on pH-responsive and thermosensitive polymers. Process Biochemistry, 2020, 99, 254-264.	1.8	12
42	Phase diagram of novel recycling aqueous two-phase systems composed of two pH-response polymers: Experiment and modeling. Fluid Phase Equilibria, 2014, 364, 42-47.	1.4	11
43	Synthesis of two thermo-sensitive copolymers forming aqueous two-phase systems. Separation and Purification Technology, 2014, 122, 217-224.	3.9	10
44	Preparation of novel alkaline pHâ€responsive copolymers for the formation of recyclable aqueous twoâ€phase systems and their application in the extraction of lincomycin. Journal of Separation Science, 2016, 39, 584-594.	1.3	10
45	Synthesis of two pH-responsive copolymers in pilot scale and its application in aqueous two-phase system. Process Biochemistry, 2019, 79, 185-194.	1.8	10
46	Preparation of a recyclable novel thermoresponsive affinity copolymer and its application towards ε-polylysine purification. Process Biochemistry, 2020, 88, 204-212.	1.8	10
47	Biodegradation of microcrystalline cellulose in pH–pH recyclable aqueous two-phase systems with water-soluble immobilized cellulase. Biochemical Engineering Journal, 2013, 79, 136-143.	1.8	9
48	Study of Microbial Transglutaminase Partitioning in Thermo-pH–Responsive Aqueous Two-Phase Systems. Applied Biochemistry and Biotechnology, 2020, 192, 1176-1190.	1.4	9
49	Catalytic transfer hydrogenation of 7-ketolithocholic acid to ursodeoxycholic acid with Raney nickel. Journal of Industrial and Engineering Chemistry, 2013, 19, 606-613.	2.9	8
50	Biosynthesis of cefprozil in an aqueous two-phase system composed of pH-responsive copolymers and its crystallization analysis. Process Biochemistry, 2018, 64, 124-129.	1.8	8
51	Partition of Tea Saponin with a Novel Recyclable Thermo-pH Aqueous Two-Phase Systems. Applied Biochemistry and Biotechnology, 2021, 193, 3062-3078.	1.4	8
52	Preparation of a Light-Sensitive and Reversible Dissolution Copolymer and Its Application in Lysozyme Purification. Biotechnology Progress, 2007, 23, 0-0.	1.3	7
53	Preparation of a pH-sensitive affinity precipitation polymer and its application in purification of trypsin. Separation and Purification Technology, 2009, 68, 172-177.	3.9	7
54	Synthesis of 7-ketolithocholic acid via indirect electrooxidation of chenodeoxycholic acid. Journal of Applied Electrochemistry, 2010, 40, 1307-1316.	1.5	7

#	Article	IF	CITATIONS
55	Production of lovastatin by a self-resistant mutant of Aspergillus terreus. Annals of Microbiology, 2011, 61, 615-621.	1.1	7
56	Lipase purification by affinity precipitation with a thermo-responsive polymer immobilized Cibacron Blue F3GA ligand. Biotechnology and Bioprocess Engineering, 2014, 19, 892-899.	1.4	7
57	Application of docking methods for metal chelate affinity precipitation of endo-glucanase using pH-response polymer. Colloids and Surfaces B: Biointerfaces, 2014, 113, 412-420.	2.5	7
58	Microbial Transglutaminase Separation by pH-Responsive Affinity Precipitation with Crocein Orange G as the Ligand. Applied Biochemistry and Biotechnology, 2015, 177, 253-266.	1.4	7
59	Separation of transglutaminase by thermo-responsive affinity precipitation using l-thyroxin as ligand. SpringerPlus, 2016, 5, 37.	1.2	7
60	Metal-Chelate Affinity Precipitation with Thermo-Responsive Polymer for Purification of ε-Poly-l-Lysine. Applied Biochemistry and Biotechnology, 2017, 183, 1254-1264.	1.4	7
61	Preparation of pH-responsive metal chelate affinity polymer for adsorption and desorption of insulin. Journal of Chemical Technology and Biotechnology, 2017, 92, 1590-1595.	1.6	7
62	Polymerization of a new thermo-responsive copolymer with N-vinylcaprolactam and its application in recyclable aqueous two-phase systems with another thermo-responsive polymer. Bioresources and Bioprocessing, 2018, 5, .	2.0	7
63	Separation of recombinant monoclonal antibodies IgG201 from a cell culture supernatant using an integrated aqueous two-phase system with thermo-separating EOPO. Separation and Purification Technology, 2021, 275, 119246.	3.9	7
64	Synthesis of thermo-sensitive copolymer with affinity butyl ligand and its application in lipase purification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1025-1030.	1.2	6
65	Partition of several model bioproducts in recycling aqueous two-phase systems with pH/light responsive copolymers. Separation and Purification Technology, 2010, 76, 104-109.	3.9	6
66	pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance. Journal of Chromatography A, 2015, 1405, 40-48.	1.8	6
67	Synthesis of ursodeoxycholic acid by electrochemical stereoselective reduction of 7-ketolithocholic acid in aprotic solvents. Scientific Reports, 2021, 11, 16273.	1.6	6
68	Study of lincomycin partition in a recyclable thermo-pH responsive aqueous two-phase system. Process Biochemistry, 2021, 109, 27-36.	1.8	6
69	Separation of antibody IgG201 by an aqueous two-phase system with recyclable pH-responsive polymers. Process Biochemistry, 2022, 113, 125-133.	1.8	6
70	Conversion of Calcium Citrate to Citric Acid with Compressed CO ₂ . ACS Omega, 2022, 7, 683-687.	1.6	6
71	Effect of Chaotropes on Lipase Back Extraction Recovery in the Process of Reverse Micellar Extraction. Applied Biochemistry and Biotechnology, 2014, 172, 3287-3296.	1.4	5
72	Preparation of ursodeoxycholic acid by direct electro-reduction of 7-ketolithocholic acid. Korean Journal of Chemical Engineering, 2014, 31, 1276-1280.	1.2	5

#	Article	IF	CITATIONS
73	Preparation and Characterization of a pH-responsive Polymer that Interacts with Microbial Transglutaminase during Affinity Precipitation. Biotechnology and Bioprocess Engineering, 2018, 23, 31-38.	1.4	5
74	Preparation of ursodeoxycholic acid from 7-ketone lithocholic acid by stereoselective electroreduction. Bioresources and Bioprocessing, 2015, 2, .	2.0	4
75	Dosageâ€Dependent Antimicrobial Activity of DNAâ€Histone Microwebs Against <i>Staphylococcus Aureus</i> . Advanced Materials Interfaces, 2021, 8, 2100717.	1.9	4
76	Bioreactors and Bioseparation. Advances in Biochemical Engineering/Biotechnology, 2010, 122, 105-150.	0.6	3
77	Separation of ursodeoxycholic acid by silylation crystallization. Bioresources and Bioprocessing, 2014, 1, .	2.0	3
78	Molecular interaction mechanisms in reverse micellar extraction of microbial transglutaminase. Journal of Chromatography A, 2017, 1511, 25-36.	1.8	3
79	Application of nickel (II) thermo-responsive affinity polymer to porcine circovirus type 2 (PCV2) cap protein purification and interaction analysis by X-ray photoelectron spectroscopy (XPS). Process Biochemistry, 2018, 69, 216-223.	1.8	3
80	Phase diagram prediction of recycling aqueous two-phase systems formed by a light-sensitive copolymer and dextran. Korean Journal of Chemical Engineering, 2009, 26, 147-152.	1.2	2
81	Synthesis of cefprozil using penicillin G acylase in recyclable aqueous two-phase systems. Biotechnology and Bioprocess Engineering, 2014, 19, 844-850.	1.4	2
82	Prediction of the Reverse Micellar Extraction of Papain Using Dissipative Particle Dynamics Simulation. Applied Biochemistry and Biotechnology, 2017, 181, 1338-1346.	1.4	2
83	Effective extraction of tylosin and spiramycin from fermentation broth using thermoâ€responsive ethylene oxide/propylene oxide aqueous twoâ€phase systems. Journal of Separation Science, 2022, 45, 570-581.	1.3	1
84	Synthesis of Core@Brush Microspheres by Atom Transfer Radical Polymerization for Capturing Phosphoprotein β-casein utilizing Iron Ion Chelation and Schiff Base Bio-conjugation. Separation and Purification Technology, 2022, , 121252.	3.9	0