Arnaud Chaumot

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1979736/arnaud-chaumot-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 2,873 23 52 h-index g-index citations papers 6.5 91 3,329 4.49 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
86	Metal bioavailable contamination engages richness decline, species turnover but unchanged functional diversity of stream macroinvertebrates at the scale of a French region. <i>Environmental Pollution</i> , 2022 , 119565	9.3	
85	Interest of a multispecies approach in active biomonitoring: Application in the Meuse watershed. <i>Science of the Total Environment</i> , 2021 , 152148	10.2	1
84	Co-expression network analysis identifies novel molecular pathways associated with cadmium and pyriproxyfen testicular toxicity in Gammarus fossarum. <i>Aquatic Toxicology</i> , 2021 , 235, 105816	5.1	2
83	Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in lipid composition. <i>IScience</i> , 2021 , 24, 102115	6.1	3
82	Subcellular Distribution of Dietary Methyl-Mercury in and Its Impact on the Amphipod Proteome. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	О
81	Quantification of multi-scale links of anthropogenic pressures with PAH and PCB bioavailable contamination in French freshwaters. <i>Water Research</i> , 2021 , 203, 117546	12.5	1
80	ArdiEes-Morcille in the Beaujolais, France: A research catchment dedicated to study of the transport and impacts of diffuse agricultural pollution in rivers. <i>Hydrological Processes</i> , 2021 , 35, e14384	₄ 3·3	O
79	Combining proteogenomics and metaproteomics for deep taxonomic and functional characterization of microbiomes from a non-sequenced host. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 23	8.2	11
78	High-multiplexed monitoring of protein biomarkers in the sentinel Gammarus fossarum by targeted scout-MRM assay, a new vision for ecotoxicoproteomics. <i>Journal of Proteomics</i> , 2020 , 226, 103	909	2
77	How to quantify the links between bioavailable contamination in watercourses and pressures of anthropogenic land cover, contamination sources and hydromorphology at multiple scales?. <i>Science of the Total Environment</i> , 2020 , 735, 139492	10.2	1
76	A "Population Dynamics" Perspective on the Delayed Life-History Effects of Environmental Contaminations: An Illustration with a Preliminary Study of Cadmium Transgenerational Effects over Three Generations in the Crustacean. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
75	In Situ Reproductive Bioassay with Caged Gammarus fossarum (Crustacea): Part 1-Gauging the Confounding Influence of Temperature and Water Hardness. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 667-677	3.8	4
74	Proteogenomics-Guided Evaluation of RNA-Seq Assembly and Protein Database Construction for Emergent Model Organisms. <i>Proteomics</i> , 2020 , 20, e1900261	4.8	1
73	In Situ Reproductive Bioassay with Caged Gammarus fossarum (Crustacea): Part 2-Evaluating the Relevance of Using a Molt Cycle Temperature-Dependent Model as a Reference to Assess Toxicity in Freshwater Monitoring. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 678-691	3.8	5
72	Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). <i>Scientific Reports</i> , 2020 , 10, 16536	4.9	16
71	In situ isobaric lipid mapping by MALDI-ion mobility separation-mass spectrometry imaging. <i>Journal of Mass Spectrometry</i> , 2020 , 55, e4531	2.2	15
70	Co-expression network analysis identifies gonad- and embryo-associated protein modules in the sentinel species Gammarus fossarum. <i>Scientific Reports</i> , 2019 , 9, 7862	4.9	8

69	Multisubstance Indicators Based on Caged Gammarus Bioaccumulation Reveal the Influence of Chemical Contamination on Stream Macroinvertebrate Abundances across France. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	11
68	Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium. <i>Aquatic Toxicology</i> , 2019 , 214, 105244	5.1	9
67	Shotgun proteomics datasets acquired on animals sampled from the wild. <i>Data in Brief</i> , 2019 , 27, 10465	Q 1.2	3
66	De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. <i>Scientific Data</i> , 2019 , 6, 184	8.2	13
65	Nongenetic inheritance of increased Cd tolerance in a field Gammarus fossarum population: Parental exposure steers offspring sensitivity. <i>Aquatic Toxicology</i> , 2019 , 209, 91-98	5.1	7
64	Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. <i>Journal of Proteomics</i> , 2019 , 198, 66-77	3.9	40
63	Assessment of sperm DNA integrity within the Palaemon longirostris (H.) population of the Seine estuary. <i>Environmental Pollution</i> , 2019 , 245, 485-493	9.3	4
62	Use of sperm DNA integrity as a marker for exposure to contamination in Palaemon serratus (Pennant 1777): Intrinsic variability, baseline level and in situ deployment. <i>Water Research</i> , 2018 , 132, 124-134	12.5	6
61	Application of a multidisciplinary and integrative weight-of-evidence approach to a 1-year monitoring survey of the Seine River. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 23404-234	. 2 9	9
60	Additive effect of calcium depletion and low resource quality on Gammarus fossarum (Crustacea, Amphipoda) life history traits. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 11264-11280	5.1	7
59	Digging Deeper Into the Pyriproxyfen-Response of the Amphipod Gammarus fossarum With a Next-Generation Ultra-High-Field Orbitrap Analyser: New Perspectives for Environmental Toxicoproteomics. <i>Frontiers in Environmental Science</i> , 2018 , 6,	4.8	8
58	On-Line Solid Phase Extraction Liquid Chromatography-Mass Spectrometry Method for Multiplexed Proteins Quantitation in an Ecotoxicology Test Specie: Gammarus fossarum. <i>Journal of Applied Bioanalysis</i> , 2018 , 4, 81-101	1.3	2
57	Natural variability and modulation by environmental stressors of global genomic cytosine methylation levels in a freshwater crustacean, Gammarus fossarum. <i>Aquatic Toxicology</i> , 2018 , 205, 11-18	3 ^{5.1}	8
56	Interactive Effects of Pesticides and Nutrients on Microbial Communities Responsible of Litter Decomposition in Streams. <i>Frontiers in Microbiology</i> , 2018 , 9, 2437	5.7	12
55	Use of Gammarus fossarum (Amphipoda) embryo for toxicity testing: A case study with cadmium. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2436-2443	3.8	3
54	Osmoregulatory responses to cadmium in reference and historically metal contaminated Gammarus fossarum (Crustacea, Amphipoda) populations. <i>Chemosphere</i> , 2017 , 180, 412-422	8.4	3
53	Multiplexed assay for protein quantitation in the invertebrate Gammarus fossarum by liquid chromatography coupled to tandem mass spectrometry. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 3969-3991	4.4	11
52	Caged Gammarus as biomonitors identifying thresholds of toxic metal bioavailability that affect gammarid densities at the French national scale. <i>Water Research</i> , 2017 , 118, 131-140	12.5	21

51	Validation of a two-generational reproduction test in Daphnia magna: An interlaboratory exercise. <i>Science of the Total Environment</i> , 2017 , 579, 1073-1083	10.2	18
50	Phenotypic defects in newborn Gammarus fossarum (Amphipoda) following embryonic exposure to fenoxycarb. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 144, 193-199	7	6
49	Ecotoxico-Proteomics for Aquatic Environmental Monitoring: First in Situ Application of a New Proteomics-Based Multibiomarker Assay Using Caged Amphipods. <i>Environmental Science & Technology</i> , 2017 , 51, 13417-13426	10.3	20
48	Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study. <i>Aquatic Toxicology</i> , 2017 , 190, 199-209	5.1	13
47	Comparison in waterborne Cu, Ni and Pb bioaccumulation kinetics between different gammarid species and populations: Natural variability and influence of metal exposure history. <i>Aquatic Toxicology</i> , 2017 , 193, 245-255	5.1	4
46	Impact of micropollutants on the life-history traits of the mosquito Aedes aegypti: On the relevance of transgenerational studies. <i>Environmental Pollution</i> , 2017 , 220, 242-254	9.3	17
45	Proteogenomic insights into the core-proteome of female reproductive tissues from crustacean amphipods. <i>Journal of Proteomics</i> , 2016 , 135, 51-61	3.9	20
44	High-throughput proteome dynamics for discovery of key proteins in sentinel species: Unsuspected vitellogenins diversity in the crustacean Gammarus fossarum. <i>Journal of Proteomics</i> , 2016 , 146, 207-14	3.9	14
43	Environmental relevance of laboratory-derived kinetic models to predict trace metal bioaccumulation in gammarids: Field experimentation at a large spatial scale (France). <i>Water Research</i> , 2016 , 95, 330-9	12.5	13
42	Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition. <i>Aquatic Toxicology</i> , 2016 , 173, 120-131	5.1	20
41	Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain. <i>Journal of Hazardous Materials</i> , 2016 , 320, 401-407	12.8	11
40	Ovary and embryo proteogenomic dataset revealing diversity of vitellogenins in the crustacean Gammarus fossarum. <i>Data in Brief</i> , 2016 , 8, 1259-62	1.2	1
39	Mothers and not genes determine inherited differences in dadmium sensitivities within unexposed populations of the freshwater crustacean Gammarus fossarum. Evolutionary Applications, 2016, 9, 355-6	5 € .8	3
38	Proteomic investigation of male Gammarus fossarum, a freshwater crustacean, in response to endocrine disruptors. <i>Journal of Proteome Research</i> , 2015 , 14, 292-303	5.6	41
37	Gammarids as Reference Species for Freshwater Monitoring 2015 , 253-280		14
36	Evolution of cadmium tolerance and associated costs in a Gammarus fossarum population inhabiting a low-level contaminated stream. <i>Ecotoxicology</i> , 2015 , 24, 1239-49	2.9	28
35	Data for comparative proteomics of ovaries from five non-model, crustacean amphipods. <i>Data in Brief</i> , 2015 , 5, 1-6	1.2	3
34	Linking feeding inhibition with reproductive impairment in Gammarus confirms the ecological relevance of feeding assays in environmental monitoring. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1031-8	3.8	12

(2010-2015)

33	Consequences of lower food intake on the digestive enzymes activities, the energy reserves and the reproductive outcome in Gammarus fossarum. <i>PLoS ONE</i> , 2015 , 10, e0125154	3.7	14
32	Non-model organisms, a species endangered by proteogenomics. <i>Journal of Proteomics</i> , 2014 , 105, 5-18	3.9	116
31	Ecological modeling for the extrapolation of ecotoxicological effects measured during in situ assays in Gammarus. <i>Environmental Science & Environmental & Environment</i>	10.3	14
30	Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. <i>Molecular and Cellular Proteomics</i> , 2014 , 13, 3612-25	7.6	44
29	Next-generation proteomics: toward customized biomarkers for environmental biomonitoring. <i>Environmental Science & Environmental Environment</i>	10.3	41
28	Influence of molting and starvation on digestive enzyme activities and energy storage in Gammarus fossarum. <i>PLoS ONE</i> , 2014 , 9, e96393	3.7	31
27	Effect of water quality and confounding factors on digestive enzyme activities in Gammarus fossarum. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 9044-56	5.1	16
26	Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. <i>Water Research</i> , 2013 , 47, 650-60	12.5	75
25	Life-history phenology strongly influences population vulnerability to toxicants: a case study with the mudsnail Potamopyrgus antipodarum. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1727-36	3.8	7
24	Towards a renewed research agenda in ecotoxicology. <i>Environmental Pollution</i> , 2012 , 160, 201-6	9.3	65
23	Vitellogenin-like proteins in the freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization throughout reproductive process, potential for use as an indicator of oocyte quality and endocrine disruption biomarker in males. <i>Aquatic Toxicology</i> , 2012 , 112-113, 72-82	5.1	37
22	Vitellogenin-like protein measurement in caged Gammarus fossarum males as a biomarker of endocrine disruptor exposure: inconclusive experience. <i>Aquatic Toxicology</i> , 2012 , 122-123, 9-18	5.1	27
21	Molecular adaptation and resilience of the insect's nuclear receptor USP. <i>BMC Evolutionary Biology</i> , 2012 , 12, 199	3	9
20	Vitellogenin-like proteins among invertebrate species diversity: potential of proteomic mass spectrometry for biomarker development. <i>Environmental Science & Environmental Sc</i>	10.3	11
19	In situ feeding assay with Gammarus fossarum (Crustacea): Modelling the influence of confounding factors to improve water quality biomonitoring. <i>Water Research</i> , 2011 , 45, 6417-29	12.5	69
18	Vitellogenin-like gene expression in freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization in females and potential for use as an endocrine disruption biomarker in males. <i>Ecotoxicology</i> , 2011 , 20, 1286-99	2.9	34
17	Ovarian cycle and embryonic development in Gammarus fossarum: application for reproductive toxicity assessment. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2249-59	3.8	73
16	Mass spectrometry assay as an alternative to the enzyme-linked immunosorbent assay test for biomarker quantitation in ecotoxicology: application to vitellogenin in Crustacea (Gammarus fossarum). <i>Journal of Chromatography A</i> , 2010 , 1217, 5109-15	4.5	23

15	Matrix Population Models as Relevant Modeling Tools in Ecotoxicology. <i>Emerging Topics in Ecotoxicology</i> , 2009 , 261-298		9
14	Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor ECR in insects. <i>Molecular Biology and Evolution</i> , 2009 , 26, 753-68	8.3	40
13	Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda) Intrinsic variability, reference levels, and a reliable tool for field surveys. <i>Aquatic Toxicology</i> , 2009 , 93, 225-33	5.1	69
12	Additive vs non-additive genetic components in lethal cadmium tolerance of Gammarus (Crustacea): novel light on the assessment of the potential for adaptation to contamination. <i>Aquatic Toxicology</i> , 2009 , 94, 294-9	5.1	14
11	The genome of the model beetle and pest Tribolium castaneum. <i>Nature</i> , 2008 , 452, 949-55	50.4	1043
10	Annotation of Tribolium nuclear receptors reveals an increase in evolutionary rate of a network controlling the ecdysone cascade. <i>Insect Biochemistry and Molecular Biology</i> , 2008 , 38, 416-29	4.5	47
9	Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development. <i>Molecular Biology and Evolution</i> , 2008 , 25, 912-28	8.3	30
8	Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1128-34	3.8	27
7	Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. <i>EMBO Journal</i> , 2007 , 26, 3770-82	13	107
6	Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. <i>PLoS Genetics</i> , 2007 , 3, e188	6	157
5	First step of a modeling approach to evaluate spatial heterogeneity in a fish (Cottus gobio) population dynamics. <i>Ecological Modelling</i> , 2006 , 197, 263-273	3	10
4	Ecotoxicology and population dynamics: Using DEBtox models in a Leslie modeling approach. <i>Ecological Modelling</i> , 2005 , 188, 30-40	3	45
3	Food availability effect on population dynamics of the midge Chironomus riparius: a Leslie modeling approach. <i>Ecological Modelling</i> , 2004 , 175, 217-229	3	21
2	Ecotoxicology and spatial modeling in population dynamics: An illustration with brown trout. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 958-969	3.8	17
1	Do migratory or demographic disruptions rule the population impact of pollution in spatial networks?. <i>Theoretical Population Biology</i> , 2003 , 64, 473-80	1.2	17