
Andrew G Hirst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19310-19314.	3.3	382
2	Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll <i>a</i> , temperature, and body weight. Limnology and Oceanography, 2003, 48, 1988-2010.	1.6	296
3	Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology - Progress Series, 2002, 230, 195-209.	0.9	266
4	Temperatureâ€size responses match latitudinalâ€size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecology Letters, 2015, 18, 327-335.	3.0	207
5	Biogeochemical fluxes through mesozooplankton. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	155
6	Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnology and Oceanography, 2006, 51, 973-987.	1.6	153
7	Shrinking body sizes in response to warming: explanations for the temperature–size rule with special emphasis on the role of oxygen. Biological Reviews, 2021, 96, 247-268.	4.7	153
8	Shifts in Mass Scaling of Respiration, Feeding, and Growth Rates across Life-Form Transitions in Marine Pelagic Organisms. American Naturalist, 2014, 183, E118-E130.	1.0	143
9	An overview of Calanus helgolandicus ecology in European waters. Progress in Oceanography, 2005, 65, 1-53.	1.5	136
10	Growth and Development Rates Have Different Thermal Responses. American Naturalist, 2011, 178, 668-678.	1.0	133
11	The temperatureâ€size rule emerges from ontogenetic differences between growth and development rates. Functional Ecology, 2012, 26, 483-492.	1.7	120
12	Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Marine Ecology - Progress Series, 2004, 279, 161-181.	0.9	100
13	Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling. Ecology Letters, 2014, 17, 1274-1281.	3.0	88
14	Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles. Biogeosciences, 2016, 13, 4111-4133.	1.3	84
15	Are in situ weight-specific growth rates body-size independent in marine planktonic copepods? A re-analysis of the global syntheses and a new empirical model. Marine Ecology - Progress Series, 1997, 154, 155-165.	0.9	82
16	Pelagic production at the Celtic Sea shelf break. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3049-3081.	0.6	79
17	Natural growth rates in Antarctic krill (Euphausia superba): I. Improving methodology and predicting intermolt period. Limnology and Oceanography, 2006, 51, 959-972.	1.6	77
18	A Synthesis of Growth Rates in Marine Epipelagic Invertebrate Zooplankton. Advances in Marine Biology, 2003, 44, 1-142.	0.7	76

ANDREW G HIRST

#	Article	IF	CITATIONS
19	How do organisms change size with changing temperature? The importance of reproductive method and ontogenetic timing. Functional Ecology, 2011, 25, 1024-1031.	1.7	76
20	Does predation controls adult sex ratios and longevities in marine pelagic copepods?. Limnology and Oceanography, 2010, 55, 2193-2206.	1.6	61
21	Naupliar development times and survival of the copepods Calanus helgolandicus and Calanus finmarchicus in relation to food and temperature. Journal of Plankton Research, 2007, 29, 757-767.	0.8	60
22	A global synthesis of seasonal temperature–size responses in copepods. Global Ecology and Biogeography, 2016, 25, 988-999.	2.7	59
23	Does egg production represent adult female copepod growth? A call to account for body weight changes. Marine Ecology - Progress Series, 2001, 223, 179-199.	0.9	59
24	Bridging Food Webs, Ecosystem Metabolism, and Biogeochemistry Using Ecological Stoichiometry Theory. Frontiers in Microbiology, 2017, 8, 1298.	1.5	53
25	Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142302.	1.2	52
26	Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170238.	1.2	48
27	Spatial demography of Calanus finmarchicus in the Irminger Sea. Progress in Oceanography, 2008, 76, 39-88.	1.5	47
28	Optimal development time in pelagic copepods. Marine Ecology - Progress Series, 2008, 367, 15-22.	0.9	44
29	Plankton Dynamics andAurelia auritaProduction in Two Contrasting Ecosystems: Comparisons and Consequences. Estuarine, Coastal and Shelf Science, 1997, 45, 209-219.	0.9	42
30	Diet and community grazing by copepods in an upwelled filament off the NW coast of Spain. Progress in Oceanography, 2001, 51, 399-421.	1.5	42
31	Errors in juvenile copepod growth rate estimates are widespread: problems with the Moult Rate method. Marine Ecology - Progress Series, 2005, 296, 263-279.	0.9	42
32	Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology, 2018, 32, 948-957.	1.7	41
33	Achieving temperature-size changes in a unicellular organism. ISME Journal, 2013, 7, 28-36.	4.4	40
34	Macroevolutionary patterns of sexual size dimorphism in copepods. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140739.	1.2	36
35	Temperatureâ€mediated changes in zooplankton body size: large scale temporal and spatial analysis. Ecography, 2020, 43, 581-590.	2.1	36
36	Effects of evolution on egg development time. Marine Ecology - Progress Series, 2006, 326, 29-35.	0.9	36

ANDREW G HIRST

#	Article	IF	CITATIONS
37	Salinity influences body weight quantification in the scyphomedusa Aurelia aurita:important implications for body weight determination in gelatinous zooplankton. Marine Ecology - Progress Series, 1998, 165, 259-269.	0.9	34
38	Estimating juvenile copepod growth rates: corrections, inter-comparisons and recommendations. Marine Ecology - Progress Series, 2007, 336, 187-202.	0.9	34
39	Annual pattern of calanoid copepod abundance, prosome length and minor role in pelagic carbon flux in the Solent, UK. Marine Ecology - Progress Series, 1999, 177, 133-146.	0.9	31
40	Equal temperature–size responses of the sexes are widespread within arthropod species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152475.	1.2	30
41	Life-cycle phenotypic composition and mortality of Calanoides acutus (Copepoda: Calanoida) in the Scotia Sea: a modelling approach. Marine Ecology - Progress Series, 2004, 272, 165-181.	0.9	29
42	Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192640.	1.2	28
43	Increasing nutrient stress reduces the efficiency of energy transfer through planktonic size spectra. Limnology and Oceanography, 2021, 66, 422-437.	1.6	28
44	Assessment of Calanus finmarchicus growth and dormancy using the aminoacyl-tRNA synthetases method. Journal of Plankton Research, 2006, 28, 1191-1198.	0.8	27
45	Ecological pressures and the contrasting scaling of metabolism and body shape in coexisting taxa: cephalopods versus teleost fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180543.	1.8	27
46	When growth models are not universal: evidence from marine invertebrates. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131546.	1.2	26
47	How does Calanus helgolandicus maintain its population in a variable environment? Analysis of a 25-year time series from the English Channel. Progress in Oceanography, 2015, 137, 513-523.	1.5	26
48	Impacts of geophysical seismic surveying on fishing success. Reviews in Fish Biology and Fisheries, 2000, 10, 113-118.	2.4	25
49	Intraspecific scaling of mass to length in pelagic animals: Ontogenetic shape change and its implications. Limnology and Oceanography, 2012, 57, 1579-1590.	1.6	21
50	Mesoscale physical variability affects zooplankton production in the Labrador Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 703-715.	0.6	20
51	Rapid shifts in the thermal sensitivity of growth but not development rate causes temperature–size response variability during ontogeny in arthropods. Oikos, 2019, 128, 823-835.	1.2	19
52	Spring mortality of the cyclopoid copepod Oithona similis in polar waters. Marine Ecology - Progress Series, 2008, 372, 169-180.	0.9	17
53	When Microscopic Organisms Inform General Ecological Theory. Advances in Ecological Research, 2010, 43, 45-85.	1.4	17
54	A new framework for growth curve fitting based on the von Bertalanffy Growth Function. Scientific Reports, 2020, 10, 7953.	1.6	17

ANDREW G HIRST

#	Article	lF	CITATIONS
55	Body size and shape responses to warming and resource competition. Functional Ecology, 2021, 35, 1460-1469.	1.7	16
56	Seasonality of Oithona similis and Calanus helgolandicus reproduction and abundance: contrasting responses to environmental variation at a shelf site. Journal of Plankton Research, 2018, 40, 295-310.	0.8	15
57	Mortality of <i>Calanus helgolandicus</i> : Sources, differences between the sexes and consumptive and nonconsumptive processes. Limnology and Oceanography, 2018, 63, 1741-1761.	1.6	14
58	Seasonal abundance and egg production rates of Oithona similis and Pseudocalanus elongatus in the northern North Sea: a first comparison of egg-ratio and incubation methods. Marine Ecology - Progress Series, 2010, 415, 159-175.	0.9	13
59	Ontogenetic bodyâ€mass scaling of nitrogen excretion relates to body surface area in diverse pelagic invertebrates. Limnology and Oceanography, 2017, 62, 311-319.	1.6	12
60	Acartia bifilosa (Copepoda: Calanoida): a clarification of the species and its varieties inermis and intermedia. Journal of Plankton Research, 1998, 20, 1119-1130.	0.8	10
61	Re-assessing copepod growth using the Moult Rate method. Journal of Plankton Research, 2014, 36, 1224-1232.	0.8	9
62	A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia, 2019, 190, 343-353.	0.9	8
63	Long-term changes in the diel vertical migration behaviour of Calanus finmarchicus in the North Sea are unrelated to fish predation. Marine Ecology - Progress Series, 1998, 171, 307-310.	0.9	6
64	Estimating digestion time in gelatinous predators: a methodological comparison with the scyphomedusa Aurelia aurita. Marine Biology, 2013, 160, 793-804.	0.7	5
65	Influence of copepod size and behaviour on vulnerability to predation by the scyphomedusa Aurelia aurita. Journal of Plankton Research, 2014, 36, 77-90.	0.8	3
66	Disentangling the counteracting effects of water content and carbon mass on zooplankton growth. Journal of Plankton Research, 0, , .	0.8	3
67	Densityâ€dependent modulation of copepod body size and temperature–size responses in a shelf sea. Limnology and Oceanography, 2021, 66, 3916-3927.	1.6	3
68	Female-biased sex ratios in marine pelagic copepods: Comment on Gusmão et al. (2013). Marine Ecology - Progress Series, 2013, 489, 297-298.	0.9	1