Hao Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979653/publications.pdf

Version: 2024-02-01

331670 289244 1,658 48 21 40 citations h-index g-index papers 53 53 53 1428 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Bioinspired Antiâ€Fogging and Antiâ€Fouling Artificial Compound Eyes. Advanced Optical Materials, 2022, 10, .	7.3	13
2	Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe. Micromachines, 2021, 12, 458.	2.9	6
3	Bioinspired Artificial Compound Eyes: Characteristic, Fabrication, and Application. Advanced Materials Technologies, 2021, 6, 2100091.	5.8	14
4	Fabrication of Three-Dimensional Microvalves of Internal Nested Structures Inside Fused Silica. Micromachines, 2021, 12, 43.	2.9	5
5	Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization. Materials, 2021, 14, 5952.	2.9	7
6	IR Artificial Compound Eye. Advanced Optical Materials, 2020, 8, 1901767.	7.3	30
7	Bioinspired Underwater Superoleophobic Microlens Array With Remarkable Oil-Repellent and Self-Cleaning Ability. Frontiers in Chemistry, 2020, 8, 687.	3.6	11
8	Mini-Review on Bioinspired Superwetting Microlens Array and Compound Eye. Frontiers in Chemistry, 2020, 8, 575786.	3.6	10
9	Fabrication of ZnSe Microlens Array for a Wide Infrared Spectral Region. IEEE Photonics Technology Letters, 2020, 32, 1327-1330.	2.5	10
10	Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes. Materials, 2020, 13, 3490.	2.9	14
11	Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature. Frontiers in Chemistry, 2020, 8, 507.	3.6	17
12	Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtosecond Laser Microfabrication. Advanced Engineering Materials, 2019, 21, 1800994.	3.5	28
13	Low-cost high integration IR polymer microlens array. Optics Letters, 2019, 44, 1600.	3.3	18
14	Artificial compound eye-tipped optical fiber for wide field illumination. Optics Letters, 2019, 44, 5961.	3.3	7
15	Green, Biodegradable, Underwater Superoleophobic Wood Sheet for Efficient Oil/Water Separation. ACS Omega, 2018, 3, 1395-1402.	3.5	61
16	Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems. Applied Surface Science, 2018, 457, 1202-1207.	6.1	27
17	Fano Resonance-Assisted Plasmonic Trapping of Nanoparticles. Plasmonics, 2017, 12, 627-630.	3.4	3
18	Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39863-39871.	8.0	162

#	Article	IF	Citations
19	Manufacturing of functional polymer micro- and nano-structures by femtosecond laser pulse. , 2017, , .		O
20	Miniaturized 3-D Solenoid-Type Micro-Heaters in Coordination With 3-D Microfluidics. Journal of Microelectromechanical Systems, 2017, 26, 588-592.	2.5	6
21	Dragonflyâ€Eyeâ€Inspired Artificial Compound Eyes with Sophisticated Imaging. Advanced Functional Materials, 2016, 26, 1995-2001.	14.9	102
22	Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Applied Physics Letters, 2016, 109, .	3.3	85
23	Oilâ€Water Separation: A Gift from the Desert. Advanced Materials Interfaces, 2016, 3, 1500650.	3.7	121
24	Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	25
25	Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures. Scientific Reports, 2016, 6, 32675.	3.3	14
26	Lens-on-lens microstructures. Optics Letters, 2015, 40, 5359.	3.3	20
27	Femtosecond laser controlling underwater oil-adhesion of glass surface. Applied Physics A: Materials Science and Processing, 2015, 119, 837-844.	2.3	21
28	Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials Chemistry A, 2015, 3, 9379-9384.	10.3	99
29	Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna. Applied Physics B: Lasers and Optics, 2015, 120, 47-51.	2.2	5
30	Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching. Applied Physics A: Materials Science and Processing, 2015, 121, 157-162.	2.3	25
31	Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Optics Letters, 2015, 40, 1928.	3.3	87
32	Reversible Underwater Lossless Oil Droplet Transportation. Advanced Materials Interfaces, 2015, 2, 1400388.	3.7	60
33	Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Optics Letters, 2014, 39, 606.	3.3	45
34	Controllable underwater anisotropic oil-wetting. Applied Physics Letters, 2014, 105, .	3.3	21
35	High-Performance Laser Beam Homogenizer Based on Double-Sided Concave Microlens. IEEE Photonics Technology Letters, 2014, 26, 2086-2089.	2.5	21
36	Bioinspired superhydrophobic surfaces with directional Adhesion. RSC Advances, 2014, 4, 8138.	3.6	44

#	Article	IF	CITATIONS
37	A high-efficiency three-dimensional helical micromixer in fused silica. Microsystem Technologies, 2013, 19, 1033-1040.	2.0	18
38	Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process. Materials Science and Engineering C, 2013, 33, 2795-2799.	7.3	10
39	Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser. ACS Applied Materials & District Series (2013, 5, 9382-9385).	8.0	122
40	Fabrication of three-dimensional metallic microcomponents in fused silica by a femtosecond laser & amp; micromoulding (FLM) method., 2013,,.		0
41	A Simple Way to Fabricate Close-Packed High Numerical Aperture Microlens Arrays. IEEE Photonics Technology Letters, 2013, 25, 1336-1339.	2.5	14
42	Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2013, 111, 243-249.	2.3	60
43	Ultrafast dynamics of thermionic emission on Au film under femtosecond laser excitation. Applied Physics A: Materials Science and Processing, 2013, 112, 479-483.	2.3	7
44	A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation. Materials Science and Engineering C, 2013, 33, 663-667.	7.3	8
45	Fabrication and analytical evaluation of threeâ€dimensional microsolenoids achieved in fused silica by femtosecondâ€aserâ€based microsolidifying process. Micro and Nano Letters, 2013, 8, 623-628.	1.3	1
46	Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser. Journal of Micromechanics and Microengineering, 2012, 22, 105017.	2.6	19
47	Fabrication of quasi-periodic micro-voids in fused silica byÂsingleÂfemtosecond laser pulse. Applied Physics A: Materials Science and Processing, 2011, 102, 39-44.	2.3	10
48	Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Optics Express, 2010, 18, 20334.	3.4	138