
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor Necrosis Factor Alpha Contributes to Inflammatory Pathology in the Placenta during Brucella abortus Infection. Infection and Immunity, 2022, 90, iai0001322.	2.2	7
2	Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host and Microbe, 2022, 30, 163-170.e6.	11.0	16
3	The microbiome and gut homeostasis. Science, 2022, 377, .	12.6	127
4	<i>Salmonella</i> versus the Microbiome. Microbiology and Molecular Biology Reviews, 2021, 85, .	6.6	88
5	5-Aminosalicylic Acid Ameliorates Colitis and Checks Dysbiotic Escherichia coli Expansion by Activating PPAR-Î ³ Signaling in the Intestinal Epithelium. MBio, 2021, 12, .	4.1	56
6	Malaria parasite infection compromises colonization resistance to an enteric pathogen by reducing gastric acidity. Science Advances, 2021, 7, .	10.3	7
7	Vitamin A supplementation boosts control of antibiotic-resistant Salmonella infection in malnourished mice. PLoS Neglected Tropical Diseases, 2020, 14, e0008737.	3.0	3
8	NOD1/NOD2 and RIP2 Regulate Endoplasmic Reticulum Stress-Induced Inflammation during <i>Chlamydia</i> Infection. MBio, 2020, 11, .	4.1	9
9	Gastrointestinal host-pathogen interaction in the age of microbiome research. Current Opinion in Microbiology, 2020, 53, 78-89.	5.1	27
10	Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio, 2019, 10, .	4.1	27
11	Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	10
12	Commensal Enterobacteriaceae Protect against Salmonella Colonization through Oxygen Competition. Cell Host and Microbe, 2019, 25, 128-139.e5.	11.0	159
13	LysMD3 is a type II membrane protein without an role in the response to a range of pathogens. Journal of Biological Chemistry, 2018, 293, 6022-6038.	3.4	11
14	Utilization of Host Polyamines in Alternatively Activated Macrophages Promotes Chronic Infection by Brucella abortus. Infection and Immunity, 2018, 86, .	2.2	14
15	Malaria Parasite-Mediated Alteration of Macrophage Function and Increased Iron Availability Predispose to Disseminated Nontyphoidal Salmonella Infection. Infection and Immunity, 2018, 86, .	2.2	26
16	Pseudogenization of the Secreted Effector Gene ssel Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host and Microbe, 2017, 21, 182-194.	11.0	80
17	Colonization resistance: The deconvolution of a complex trait. Journal of Biological Chemistry, 2017, 292, 8577-8581.	3.4	42
18	Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology, 2017, 39, 1-6.	5.1	420

#	Article	IF	CITATIONS
19	NOD1 and NOD2: Beyond Peptidoglycan Sensing. Trends in Immunology, 2017, 38, 758-767.	6.8	103
20	Microbiota-activated PPAR-Î ³ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 2017, 357, 570-575.	12.6	796
21	Editorial overview: Host-microbe interactions: Bacteria. Current Opinion in Microbiology, 2017, 35, v-viii.	5.1	1
22	How bacterial pathogens use type III and type IV secretion systems to facilitate their transmission. Current Opinion in Microbiology, 2017, 35, 1-7.	5.1	27
23	Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species. Current Topics in Microbiology and Immunology, 2017, 413, 269-295.	1.1	20
24	T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria. PLoS Pathogens, 2017, 13, e1006566.	4.7	24
25	Chronic Bacterial Pathogens: Mechanisms of Persistence. Microbiology Spectrum, 2016, 4, .	3.0	28
26	Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580. MBio, 2016, 7, e02265.	4.1	67
27	Virulence factors enhance <i>Citrobacter rodentium</i> expansion through aerobic respiration. Science, 2016, 353, 1249-1253.	12.6	150
28	Energy Taxis toward Host-Derived Nitrate Supports a <i>Salmonella</i> Pathogenicity Island 1-Independent Mechanism of Invasion. MBio, 2016, 7, .	4.1	47
29	Iron acquisition pathways and colonization of the inflamed intestine by Salmonella enterica serovar Typhimurium. International Journal of Medical Microbiology, 2016, 306, 604-610.	3.6	26
30	Disseminated infections with antibiotic-resistant non-typhoidal <i>Salmonella</i> strains: contributions of host and pathogen factors. Pathogens and Disease, 2016, 74, ftw103.	2.0	40
31	NOD1 and NOD2: New Functions Linking Endoplasmic Reticulum Stress and Inflammation. DNA and Cell Biology, 2016, 35, 311-313.	1.9	18
32	Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature, 2016, 534, 697-699.	27.8	132
33	NOD1 and NOD2 signalling links ER stress with inflammation. Nature, 2016, 532, 394-397.	27.8	396
34	<i>Brucella</i> spp. Virulence Factors and Immunity. Annual Review of Animal Biosciences, 2016, 4, 111-127.	7.4	120
35	Mast cells and histamine alter intestinal permeability during malaria parasite infection. Immunobiology, 2016, 221, 468-474.	1.9	36
36	Inflammation-associated alterations to the intestinal microbiota reduce colonization resistance against non-typhoidal Salmonella during concurrent malaria parasite infection. Scientific Reports, 2015, 5, 14603.	3.3	65

#	Article	IF	CITATIONS
37	Now you see me, now you don't: the interaction of Salmonella with innate immune receptors. Nature Reviews Microbiology, 2015, 13, 206-216.	28.6	135
38	The Flagellar Regulator TviA Reduces Pyroptosis by Salmonella enterica Serovar Typhi. Infection and Immunity, 2015, 83, 1546-1555.	2.2	36
39	Phospholipase A1 Modulates the Cell Envelope Phospholipid Content of Brucella melitensis, Contributing to Polymyxin Resistance and Pathogenicity. Antimicrobial Agents and Chemotherapy, 2015, 59, 6717-6724.	3.2	15
40	Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?. Nature Reviews Microbiology, 2015, 13, 71-82.	28.6	209
41	Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria. PLoS Neglected Tropical Diseases, 2015, 9, e0004027.	3.0	21
42	Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection. PLoS ONE, 2014, 9, e108606.	2.5	12
43	Hypoferremia of infection: a double-edged sword?. Nature Medicine, 2014, 20, 335-337.	30.7	5
44	Malaria Parasite Infection Compromises Control of Concurrent Systemic Non-typhoidal Salmonella Infection via IL-10-Mediated Alteration of Myeloid Cell Function. PLoS Pathogens, 2014, 10, e1004049.	4.7	75
45	A Protein-Conjugate Approach to Develop a Monoclonal Antibody-Based Antigen Detection Test for the Diagnosis of Human Brucellosis. PLoS Neglected Tropical Diseases, 2014, 8, e2926.	3.0	22
46	The Predicted ABC Transporter AbcEDCBA Is Required for Type IV Secretion System Expression and Lysosomal Evasion by Brucella ovis. PLoS ONE, 2014, 9, e114532.	2.5	18
47	PPARÎ ³ -Mediated Increase in Glucose Availability Sustains Chronic Brucella abortus Infection in Alternatively Activated Macrophages. Cell Host and Microbe, 2013, 14, 159-170.	11.0	145
48	Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature, 2013, 496, 233-237.	27.8	210
49	Host-Derived Nitrate Boosts Growth of <i>E. coli</i> in the Inflamed Gut. Science, 2013, 339, 708-711.	12.6	798
50	Innate immune recognition of flagellin limits systemic persistence of <i>Brucella</i> . Cellular Microbiology, 2013, 15, 942-960.	2.1	38
51	Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration. MBio, 2013, 4, .	4.1	176
52	Sensing of Bacterial Type IV Secretion via the Unfolded Protein Response. MBio, 2013, 4, e00418-12.	4.1	112
53	CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function. PLoS Pathogens, 2013, 9, e1003454.	4.7	91
54	Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation. PLoS Pathogens, 2013, 9, e1003267.	4.7	139

#	Article	IF	CITATIONS
55	Malaria-Associated <scp>l</scp> -Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia. Infection and Immunity, 2013, 81, 3515-3526.	2.2	69
56	Very Long O-antigen Chains Enhance Fitness during Salmonella-induced Colitis by Increasing Bile Resistance. PLoS Pathogens, 2012, 8, e1002918.	4.7	57
57	Identification of a common immune signature in murine and human systemic Salmonellosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4998-5003.	7.1	83
58	Microbial Amyloids Induce Interleukin 17A (IL-17A) and IL-22 Responses via Toll-Like Receptor 2 Activation in the Intestinal Mucosa. Infection and Immunity, 2012, 80, 4398-4408.	2.2	76
59	Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of <i>Salmonella</i> by Nitrate Respiration. MBio, 2012, 3, .	4.1	194
60	The virB-encoded type IV secretion system is critical for establishment of infection and persistence of Brucella ovis infection in mice. Veterinary Microbiology, 2012, 159, 130-140.	1.9	28
61	Salmonellosis in cattle: Advantages of being an experimental model. Research in Veterinary Science, 2012, 93, 1-6.	1.9	50
62	The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus. Frontiers in Cellular and Infection Microbiology, 2012, 2, 47.	3.9	51
63	Brucellosis and type IV secretion. Future Microbiology, 2012, 7, 47-58.	2.0	62
64	Interactions of the Human Pathogenic <i>Brucella</i> Species with Their Hosts. Annual Review of Microbiology, 2011, 65, 523-541.	7.3	235
65	A <i>Salmonella</i> Virulence Factor Activates the NOD1/NOD2 Signaling Pathway. MBio, 2011, 2, .	4.1	59
66	Early MyD88-Dependent Induction of Interleukin-17A Expression during Salmonella Colitis. Infection and Immunity, 2011, 79, 3131-3140.	2.2	40
67	Putative ATP-Binding Cassette Transporter Is Essential for <i>Brucella ovis</i> Pathogenesis in Mice. Infection and Immunity, 2011, 79, 1706-1717.	2.2	43
68	How To Become a Top Model: Impact of Animal Experimentation on Human Salmonella Disease Research. Infection and Immunity, 2011, 79, 1806-1814.	2.2	121
69	Intestinal inflammation allows <i>Salmonella</i> to use ethanolamine to compete with the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17480-17485.	7.1	551
70	Laboratory Animal Models for Brucellosis Research. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	83
71	Development and evaluation of a species-specific PCR assay for the detection of Brucella ovis infection in rams. Veterinary Microbiology, 2010, 145, 158-164.	1.9	36
72	Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature, 2010, 467, 426-429.	27.8	1,036

#	Article	IF	CITATIONS
73	Microreview: Innate immune encounters of the (Type) 4th kind: Brucella. Cellular Microbiology, 2010, 12, 1195-1202.	2.1	24
74	Both Hemolytic Anemia and Malaria Parasite-Specific Factors Increase Susceptibility to Nontyphoidal <i>Salmonella enterica</i> Serovar Typhimurium Infection in Mice. Infection and Immunity, 2010, 78, 1520-1527.	2.2	72
75	Pathogenesis of Brucella spp The Open Veterinary Science Journal, 2010, 4, 109-118.	0.7	62
76	Genome Degradation in Brucella ovis Corresponds with Narrowing of Its Host Range and Tissue Tropism. PLoS ONE, 2009, 4, e5519.	2.5	110
77	Natural Antibody Contributes to Host Defense against an Attenuated Brucella abortus virB Mutant. Infection and Immunity, 2009, 77, 3004-3013.	2.2	32
78	Establishment of Systemic <i>Brucella melitensis</i> Infection through the Digestive Tract Requires Urease, the Type IV Secretion System, and Lipopolysaccharide O Antigen. Infection and Immunity, 2009, 77, 4197-4208.	2.2	84
79	Is Brucella an enteric pathogen? Reply from Tsolis, Solnick and Baümler. Nature Reviews Microbiology, 2009, 7, 250-250.	28.6	1
80	Lipocalin-2 Resistance Confers an Advantage to Salmonella enterica Serotype Typhimurium for Growth and Survival in the Inflamed Intestine. Cell Host and Microbe, 2009, 5, 476-486.	11.0	444
81	Life in the inflamed intestine, Salmonella style. Trends in Microbiology, 2009, 17, 498-506.	7.7	172
82	Brucella. , 2009, , 1-64.		5
83	From bench to bedside: stealth of enteroinvasive pathogens. Nature Reviews Microbiology, 2008, 6, 883-892.	28.6	132
84	Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the <i>Brucella</i> type IV secretion system. Molecular Microbiology, 2008, 70, 1378-1396.	2.5	181
85	Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunology, 2008, 9, 1171-1178.	14.5	428
86	VirB3 to VirB6 and VirB8 to VirB11, but Not VirB7, Are Essential for Mediating Persistence of <i>Brucella</i> in the Reticuloendothelial System. Journal of Bacteriology, 2008, 190, 4427-4436.	2.2	75
87	Modulation of the Bovine Trophoblastic Innate Immune Response by <i>Brucella abortus</i> . Infection and Immunity, 2008, 76, 1897-1907.	2.2	55
88	VirB12 Is a Serological Marker of Brucella Infection in Experimental and Natural Hosts. Vaccine Journal, 2008, 15, 208-214.	3.1	29
89	Inactivation of the Type IV Secretion System Reduces the Th1 Polarization of the Immune Response to <i>Brucella abortus</i> Infection. Infection and Immunity, 2008, 76, 3207-3213.	2.2	46
90	Injection of Flagellin into the Host Cell Cytosol by Salmonella enterica Serotype Typhimurium. Journal of Biological Chemistry, 2007, 282, 33897-33901.	3.4	145

#	Article	IF	CITATIONS
91	Mice Lacking Components of Adaptive Immunity Show Increased Brucella abortus virB Mutant Colonization. Infection and Immunity, 2007, 75, 2965-2973.	2.2	56
92	Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cellular Microbiology, 2007, 9, 1851-1869.	2.1	118
93	Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine, 2006, 24, 5169-5177.	3.8	50
94	The Salmonella enterica Serotype Typhimurium lpf, bcf, stb, stc, std, and sth Fimbrial Operons Are Required for Intestinal Persistence in Mice. Infection and Immunity, 2005, 73, 3358-3366.	2.2	169
95	Brucella abortus VirB12 Is Expressed during Infection but Is Not an Essential Component of the Type IV Secretion System. Infection and Immunity, 2005, 73, 6048-6054.	2.2	34
96	Differential Requirements for VirB1 and VirB2 during Brucella abortus Infection. Infection and Immunity, 2004, 72, 5143-5149.	2.2	87
97	The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves. Infection and Immunity, 2002, 70, 3843-3855.	2.2	249
98	virB-Mediated Survival of Brucella abortus in Mice and Macrophages Is Independent of a Functional Inducible Nitric Oxide Synthase or NADPH Oxidase in Macrophages. Infection and Immunity, 2002, 70, 4826-4832.	2.2	40
99	Identification of a new iron regulated locus of Salmonella typhi. Gene, 1996, 183, 207-213.	2.2	154
100	Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. , 0, , 291-305.		1
101	Chronic Bacterial Pathogens: Mechanisms of Persistence. , 0, , 513-528.		0