

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979296/publications.pdf Version: 2024-02-01

\\/FLLI

#	Article	IF	CITATIONS
1	Facile microencapsulation of phase change material with organic silicon shell used for energy storage. Solar Energy Materials and Solar Cells, 2022, 240, 111718.	6.2	10
2	Research on long-chain alkanol etherified melamine-formaldehyde resin MicroPCMs for energy storage. Energy, 2021, 214, 119029.	8.8	8
3	Synthesis and characterization of hydrophobic reversible thermochromic MicroPCMs with amino resins shell for thermal energy storage. Energy and Buildings, 2021, 230, 110528.	6.7	11
4	Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs. Chemical Engineering Journal, 2021, 408, 127276.	12.7	46
5	Influences of PVA modification on performance of microencapsulated reversible thermochromic phase change materials for energy storage application. Solar Energy Materials and Solar Cells, 2021, 222, 110938.	6.2	9
6	Design and synthesis of microcapsules with cross-linking network supporting core for supercooling degree regulation. Energy and Buildings, 2021, 253, 111437.	6.7	12
7	Microencapsulation of oil soluble polyaspartic acid ester and isophorone diisocyanate and their application in selfâ€healing anticorrosive epoxy resin. Journal of Applied Polymer Science, 2020, 137, 48478.	2.6	14
8	Thermal energy regulated and thermochromic composite film with temperature-sensitive "breathable― stomata. Journal of Materials Science, 2020, 55, 12921-12939.	3.7	10
9	Reversible Photochromic Nanofiber Membrane Containing Combâ€Like Poly(octadecyl acrylate) Nanoparticles Used for Ultraviolet Intensity Indicator. Macromolecular Materials and Engineering, 2019, 304, 1900299.	3.6	9
10	Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Applied Energy, 2019, 247, 615-629.	10.1	95
11	Enhanced Thermal-to-Flexible Phase Change Materials Based on Cellulose/Modified Graphene Composites for Thermal Management of Solar Energy. ACS Applied Materials & Interfaces, 2019, 11, 45832-45843.	8.0	83
12	Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Applied Energy, 2018, 217, 281-294.	10.1	192
13	Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy, 2018, 159, 857-869.	8.8	68
14	Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydrate Polymers, 2018, 200, 602-610.	10.2	64
15	Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization. Polymers, 2018, 10, 172.	4.5	11
16	Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating. Polymers, 2018, 10, 319.	4.5	38
17	Experimental observation of the self-healing microcapsules containing rejuvenator states in asphalt binder. Construction and Building Materials, 2017, 147, 533-542.	7.2	37
18	Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 305-316.	4.7	39

Wei Li

#	Article	IF	CITATIONS
19	Microstructure regulation of microencapsulated bio-based <i>n</i> -dodecanol as phase change materials <i>via in situ</i> polymerization. New Journal of Chemistry, 2017, 41, 14696-14707.	2.8	27
20	Effects of oil-soluble etherified melamine-formaldehyde prepolymers on in situ microencapsulation and macroencapsulation of n-dodecanol. New Journal of Chemistry, 2017, 41, 9424-9437.	2.8	32
21	Investigation of the Self-Healing Behaviors of Microcapsules/Bitumen Composites by a Repetitive Direct Tension Test. Materials, 2016, 9, 600.	2.9	30
22	Evaluating and Modeling the Internal Diffusion Behaviors of Microencapsulated Rejuvenator in Aged Bitumen by FTIR-ATR Tests. Materials, 2016, 9, 932.	2.9	25
23	Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials. Energy, 2016, 106, 221-230.	8.8	24
24	Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes. Langmuir, 2016, 32, 5365-5372.	3.5	56
25	Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials. Thermochimica Acta, 2016, 633, 161-169.	2.7	12
26	Preparation of polyaniline-coated polyacrylonitrile fiber mats and their application to Cr(VI) removal. Synthetic Metals, 2016, 222, 255-266.	3.9	36
27	A novel PVDF/graphene composite membrane based on electrospun nanofibrous film for oil/water emulsion separation. Composites Communications, 2016, 2, 5-8.	6.3	39
28	Fabrication and characterization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method. Construction and Building Materials, 2016, 121, 471-482.	7.2	35
29	Design, controlled fabrication and characterization of narrow-disperse macrocapsules containing Micro/NanoPCMs. Materials and Design, 2016, 99, 225-234.	7.0	22
30	Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core. Textile Reseach Journal, 2016, 86, 493-501.	2.2	17
31	Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy, 2015, 87, 86-94.	8.8	48
32	Microencapsulation and characterization of polyamic acid microcapsules containing <l>n</l> -octadecane via electrospraying method. Materials Express, 2015, 5, 480-488.	0.5	6
33	A Novel Method for the Preparation of Narrow-Disperse Nanoencapsulated Phase Change Materials by Phase Inversion Emulsification and Suspension Polymerization. Industrial & Engineering Chemistry Research, 2015, 54, 9307-9313.	3.7	23
34	Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage. Energy, 2014, 68, 160-166.	8.8	78
35	Fabrication and Performances of Microencapsulated <i>n</i> -Alkanes with Copolymers Having <i>n</i> -Octadecyl Side Chains As Shells. Industrial & Engineering Chemistry Research, 2014, 53, 1678-1687.	3.7	17
36	Composition and Characterization of Thermoregulated Fiber Containing Acrylic-Based Copolymer Microencapsulated Phase-Change Materials (MicroPCMs). Industrial & Engineering Chemistry Research, 2014, 53, 5413-5420.	3.7	39

Wei Li

#	Article	IF	CITATIONS
37	Fabrication, Characterization and Suppression of Supercooling in Microencapsulated <i>n</i> -Octadecane with Methyl Methacrylate-Octadecyl Methacrylate Copolymer as Shell. Science of Advanced Materials, 2014, 6, 120-127.	0.7	7
38	Coaxial Electrospun Thermo-Regulated Sheath/Core Nanofibers with a Comb-Like Polymer Core. Science of Advanced Materials, 2014, 6, 2640-2645.	0.7	2
39	Fabrication, characterization, and supercooling suppression of nanoencapsulated n-octadecane with methyl methacrylate–octadecyl methacrylate copolymer shell. Colloid and Polymer Science, 2013, 291, 1705-1712.	2.1	28
40	Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage. Energy, 2013, 57, 607-614.	8.8	61
41	Preparation and Properties of Microencapsulated Phase Change Materials Containing Two-Phase Core Materials. Industrial & Engineering Chemistry Research, 2013, 52, 14706-14712.	3.7	37
42	Crystal structure and thermal property of polyethylene glycol octadecyl ether. Thermochimica Acta, 2013, 558, 83-86.	2.7	17
43	Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage. Energy, 2012, 46, 188-199.	8.8	127
44	Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage. Energy, 2012, 38, 249-254.	8.8	95
45	Preparation and characterization of poly(methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials. Solar Energy, 2012, 86, 2056-2066.	6.1	73
46	Fabrication and characterization of microencapsulated n-octadecane with different crosslinked methylmethacrylate-based polymer shells. Solar Energy Materials and Solar Cells, 2012, 98, 283-293.	6.2	136
47	Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell. Energy, 2011, 36, 785-791.	8.8	123
48	UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Solar Energy Materials and Solar Cells, 2010, 94, 1643-1647.	6.2	88
49	Fabrication and Characterization of Microencapsulated Phase Change Material with Large Diameter Range. Polymer-Plastics Technology and Engineering, 2009, 49, 90-94.	1.9	9
50	Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Materials Chemistry and Physics, 2007, 106, 437-442.	4.0	148
51	Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamine-formaldehyde microcapsules. Colloid and Polymer Science, 2007, 285, 1691-1697.	2.1	53
52	Microencapsulated Phase Change Materials and its Application in Thermal-Regulated Fibers. Key Engineering Materials, 0, 519, 6-9.	0.4	2
53	New Approach to Fabricate Microcapsules with Comb-Like Copolymer Shell by Phase Separation Method. Advanced Materials Research, 0, 860-863, 577-581.	0.3	1
54	Microencapsulation of energy conversion photochromic materials with epoxy resin shell by interfacial polymerization. IOP Conference Series: Materials Science and Engineering. 0. 394. 022009.	0.6	1