List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979232/publications.pdf Version: 2024-02-01

PHILIPPE POINCEARD

#	Article	IF	CITATIONS
1	Toxoplasma gondii Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective Immune Response against T. gondii Infection. Infection and Immunity, 2004, 72, 4127-4137.	1.0	203
2	Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions. Journal of Virology, 2010, 84, 11905-11915.	1.5	181
3	Subcellular Localization of Hepatitis C Virus Structural Proteins in a Cell Culture System That Efficiently Replicates the Virus. Journal of Virology, 2006, 80, 2832-2841.	1.5	178
4	NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly. PLoS Pathogens, 2011, 7, e1001278.	2.1	142
5	Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. Journal of General Virology, 2010, 91, 2230-2237.	1.3	133
6	Assembly of Infectious HIV-1 in Human Epithelial and T-Lymphoblastic Cell Lines. Journal of Molecular Biology, 2006, 359, 848-862.	2.0	127
7	Morphogenesis of hepatitis B virus and its subviral envelope particles. Cellular Microbiology, 2009, 11, 1561-1570.	1.1	121
8	Identification of GBF1 as a Cellular Factor Required for Hepatitis C Virus RNA Replication. Journal of Virology, 2010, 84, 773-787.	1.5	121
9	Zika virus induces massive cytoplasmic vacuolization and paraptosisâ€like death in infected cells. EMBO Journal, 2017, 36, 1653-1668.	3.5	118
10	IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their infectivity. Retrovirology, 2014, 11, 103.	0.9	114
11	ILâ€34 and macrophage colonyâ€stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells. Hepatology, 2014, 60, 1879-1890.	3.6	107
12	Hepatitis B Virus Subviral Envelope Particle Morphogenesis and Intracellular Trafficking. Journal of Virology, 2007, 81, 3842-3851.	1.5	106
13	Hepatitis C Virus-Like Particle Morphogenesis. Journal of Virology, 2002, 76, 4073-4079.	1.5	102
14	Viral detection by electron microscopy: past, present and future. Biology of the Cell, 2008, 100, 491-501.	0.7	93
15	Both Pre-S1 and S Domains of Hepatitis B Virus Envelope Proteins Interact with the Core Particle. Virology, 1997, 228, 115-120.	1.1	89
16	Novel Human Reovirus Isolated from Children with Acute Necrotizing Encephalopathy. Emerging Infectious Diseases, 2011, 17, 1436-44.	2.0	78
17	Lipid droplet hijacking by intracellular pathogens. Cellular Microbiology, 2017, 19, e12688.	1.1	78

18 Hepatitis B Virus Entry into Cells. Cells, 2020, 9, 1486.

1.8 77

#	Article	IF	CITATIONS
19	The Association of Hepatitis C Virus Glycoproteins with Apolipoproteins E and B Early in Assembly Is Conserved in Lipoviral Particles. Journal of Biological Chemistry, 2014, 289, 18904-18913.	1.6	76
20	Amphipathic α-Helix AH2 Is a Major Determinant for the Oligomerization of Hepatitis C Virus Nonstructural Protein 4B. Journal of Virology, 2010, 84, 12529-12537.	1.5	73
21	Virus-induced double-membrane vesicles. Cellular Microbiology, 2015, 17, 45-50.	1.1	73
22	Hepatitis C virus core protein, lipid droplets and steatosis. Journal of Viral Hepatitis, 2008, 15, 157-164.	1.0	64
23	Sequential biogenesis of host cell membrane rearrangements induced by hepatitis C virus infection. Cellular and Molecular Life Sciences, 2013, 70, 1297-1306.	2.4	63
24	Nuclear lipid droplets identified by electron microscopy of serial sections. BMC Research Notes, 2013, 6, 386.	0.6	57
25	Virus detection by transmission electron microscopy: Still useful for diagnosis and a plus for biosafety. Reviews in Medical Virology, 2019, 29, e2019.	3.9	57
26	Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathogens, 2017, 13, e1006610.	2.1	56
27	Hepatitis C virus budding at lipid droplet-associated ER membrane visualized by 3D electron microscopy. Histochemistry and Cell Biology, 2008, 130, 561-566.	0.8	55
28	Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cellular and Molecular Life Sciences, 2021, 78, 3565-3576.	2.4	55
29	Hepatitis C Virus-Like Particle Budding: Role of the Core Protein and Importance of Its Asp 111. Journal of Virology, 2003, 77, 10131-10138.	1.5	54
30	Chimeric hepatitis B virus/hepatitis C virus envelope proteins elicit broadly neutralizing antibodies and constitute a potential bivalent prophylactic vaccine. Hepatology, 2013, 57, 1303-1313.	3.6	54
31	IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Frontiers in Immunology, 2019, 10, 204.	2.2	52
32	Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. Journal of General Virology, 2007, 88, 1133-1143.	1.3	51
33	IL-26 is overexpressed in chronically HCV-infected patients and enhances TRAIL-mediated cytotoxicity and interferon production by human NK cells. Gut, 2015, 64, 1466-1475.	6.1	49
34	FHL1 is a major host factor for chikungunya virus infection. Nature, 2019, 574, 259-263.	13.7	49
35	Hepatitis B virus entry into <scp>HepG2â€NTCP</scp> cells requires clathrinâ€mediated endocytosis. Cellular Microbiology, 2020, 22, e13205.	1.1	49
36	Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly. Journal of General Virology, 2006, 87, 855-860.	1.3	48

#	Article	IF	CITATIONS
37	Core protein domains involved in hepatitis C virus-like particle assembly and budding at the endoplasmic reticulum membrane. Cellular Microbiology, 2007, 9, 1014-1027.	1.1	48
38	Perinatal Transmission of Hepatitis B Virus in Senegal, West Africa. Viral Immunology, 1993, 6, 65-73.	0.6	47
39	Rapid clearance of storage-induced microerythrocytes alters transfusion recovery. Blood, 2021, 137, 2285-2298.	0.6	45
40	Up-Regulation of the ATP-Binding Cassette Transporter A1 Inhibits Hepatitis C Virus Infection. PLoS ONE, 2014, 9, e92140.	1.1	44
41	Chimeric hepatitis B and C viruses envelope proteins can form subviral particles: implications for the design of new vaccine strategies. New Biotechnology, 2009, 25, 226-234.	2.4	43
42	Ultrastructural organisation of HCV from the bloodstream of infected patients revealed by electron microscopy after specific immunocapture. Gut, 2017, 66, 1487-1495.	6.1	43
43	Gene transfer using human polyomavirus BK virus-like particles expressed in insect cells. Journal of General Virology, 2001, 82, 3005-3009.	1.3	43
44	Antiviral effect of α-glucosidase inhibitors on viral morphogenesis and binding properties of hepatitis C virus-like particles. Journal of General Virology, 2006, 87, 861-871.	1.3	43
45	Hepatitis C virus diversity and hepatic steatosis. Journal of Viral Hepatitis, 2013, 20, 77-84.	1.0	42
46	Subcellular Localization and Function of an Epitope-Tagged p7 Viroporin in Hepatitis C Virus-Producing Cells. Journal of Virology, 2013, 87, 1664-1678.	1.5	42
47	Immunocytochemical and electron microscopic study of hepatitis B virus antigen and complete particle production in hepatitis B virus DNA transfected HepG2 cells. Hepatology, 1990, 11, 277-285.	3.6	39
48	Ultrastructural analysis of hepatitis B virus in HepG2-transfected cells with special emphasis on subviral filament morphogenesis. Hepatology, 1998, 28, 1128-1133.	3.6	37
49	Hepatitis C virus ultrastructure and morphogenesis. Biology of the Cell, 2004, 96, 103-108.	0.7	37
50	Single molecule localisation microscopy reveals how HIV-1 Gag proteins sense membrane virus assembly sites in living host CD4 T cells. Scientific Reports, 2018, 8, 16283.	1.6	37
51	Secretory Vesicles Are the Principal Means of SARS-CoV-2 Egress. Cells, 2021, 10, 2047.	1.8	37
52	Hepatitis B, C, D, and E Markers in Rural Equatorial African Villages (Gabon). American Journal of Tropical Medicine and Hygiene, 1995, 53, 338-341.	0.6	35
53	Centrosomal Latency of Incoming Foamy Viruses in Resting Cells. PLoS Pathogens, 2007, 3, e74.	2.1	34
54	Identification of the Glycoprotein 41â,,¢ Cytoplasmic Tail Domains of Human Immunodeficiency Virus Type 1 That Interact with Pr55GagParticles. AIDS Research and Human Retroviruses, 2000, 16, 1141-1147.	0.5	33

#	Article	IF	CITATIONS
55	Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication. Journal of Virology, 2019, 93, .	1.5	33
56	Hepatitis C Vaccine: 10 Good Reasons for Continuing. Hepatology, 2020, 71, 1845-1850.	3.6	33
57	Impact of Natural Polymorphism within the gp41 Cytoplasmic Tail of Human Immunodeficiency Virus Type 1 on the Intracellular Distribution of Envelope Glycoproteins and Viral Assembly. Journal of Virology, 2007, 81, 125-140.	1.5	30
58	The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	29
59	A novel CD4-CD8α+CD205+CD11b- murine spleen dendritic cell line: establishment, characterization and functional analysis in a model of vaccination to toxoplasmosis. Cellular Microbiology, 2005, 7, 1659-1671.	1.1	28
60	Ultrastructural and quantitative analysis of the lipid droplet clustering induced by hepatitis C virus core protein. Cellular and Molecular Life Sciences, 2010, 67, 3151-3161.	2.4	27
61	Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses, 2020, 12, 738.	1.5	23
62	Full assembly of HIV-1 particles requires assistance of the membrane curvature factor IRSp53. ELife, 2021, 10, .	2.8	23
63	Persistent delta antigenaemia in chronic delta hepatitis and its relation with human immunodeficiency virus infection. Journal of Medical Virology, 1992, 38, 191-194.	2.5	22
64	Direct interaction between the hepatitis B virus core and envelope proteins analyzed in a cellular context. Scientific Reports, 2019, 9, 16178.	1.6	21
65	Chimeric hepatitis B virus (HBV)/hepatitis C virus (HCV) subviral envelope particles induce efficient anti-HCV antibody production in animals pre-immunized with HBV vaccine. Vaccine, 2015, 33, 973-976.	1.7	20
66	Functional Mapping of Regions Involved in the Negative Imprinting of Virion Particle Infectivity and in Target Cell Protection by Interferon-Induced Transmembrane Protein 3 against HIV-1. Journal of Virology, 2019, 93, .	1.5	20
67	Involvement of an Arginine Triplet in M1 Matrix Protein Interaction with Membranes and in M1 Recruitment into Virus-Like Particles of the Influenza A(H1N1)pdm09 Virus. PLoS ONE, 2016, 11, e0165421.	1.1	20
68	Sequence and Functional Analysis of the Envelope Glycoproteins of Hepatitis C Virus Variants Selectively Transmitted to a New Host. Journal of Virology, 2013, 87, 13609-13618.	1.5	19
69	Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells. Nature Communications, 2022, 13, 630.	5.8	19
70	Hepatitis delta virus infection in French male HBsAg-positive homosexuals. Hepatology, 1989, 10, 342-345.	3.6	16
71	Correlative Scanning-Transmission Electron Microscopy Reveals that a Chimeric Flavivirus Is Released as Individual Particles in Secretory Vesicles. PLoS ONE, 2014, 9, e93573.	1.1	16
72	Quantitative analysis of immunogold labellings of collagen types I, III, IV and VI in healthy and pathological human corneas. Graefe's Archive for Clinical and Experimental Ophthalmology, 1995, 233, 331-338.	1.0	15

#	Article	IF	CITATIONS
73	The cell biology of hepatitis C virus (HCV) lipid addiction: Molecular mechanisms and its potential importance in the clinic. International Journal of Biochemistry and Cell Biology, 2010, 42, 869-879.	1.2	15
74	Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus. Protein Expression and Purification, 2015, 116, 1-6.	0.6	15
75	Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties. PLoS ONE, 2016, 11, e0151626.	1.1	15
76	Assembly and Immunogenicity of Chimeric Gag–Env Proteins Derived from the Human Immunodeficiency Virus Type 1. AIDS Research and Human Retroviruses, 1996, 12, 291-301.	0.5	14
77	The birth and life of lipid droplets: learning from the hepatitis C virus. Biology of the Cell, 2011, 103, 223-231.	0.7	14
78	Transcriptomic profiling of a chicken lung epithelial cell line (CLEC213) reveals a mitochondrial respiratory chain activity boost during influenza virus infection. PLoS ONE, 2017, 12, e0176355.	1.1	13
79	Infection of Human Liver Myofibroblasts by Hepatitis C Virus: A Direct Mechanism of Liver Fibrosis in Hepatitis C. PLoS ONE, 2015, 10, e0134141.	1.1	13
80	Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Human Vaccines and Immunotherapeutics, 2013, 9, 1112-1118.	1.4	12
81	Stereoselective synthesis of α-l-bicarbocyclic nucleosides as potential antiviral drugs. Tetrahedron Letters, 1998, 39, 9175-9178.	0.7	11
82	HCV-Mediated Apoptosis of Hepatocytes in Culture and Viral Pathogenesis. PLoS ONE, 2016, 11, e0155708.	1.1	10
83	Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. Journal of Virology, 2022, 96, .	1.5	10
84	Endogenous Virus and Hepatitis C Virus-Like Particle Budding in BHK-21 Cells. Journal of Virology, 2003, 77, 3888-3889.	1.5	9
85	Escape of HIV-1 Envelope Glycoprotein from Restriction of Infection by IFITM3. Journal of Virology, 2021, 95, .	1.5	9
86	Annulate lamellae and intracellular pathogens. Cellular Microbiology, 2021, 23, e13328.	1.1	9
87	Incorporation of apolipoprotein E into HBV–HCV subviral envelope particles to improve the hepatitis vaccine strategy. Scientific Reports, 2021, 11, 21856.	1.6	7
88	Viral Sequence Variation in Chronic Carriers of Hepatitis C Virus Has a Low Impact on Liver Steatosis. PLoS ONE, 2012, 7, e33749.	1.1	6
89	The Replacement of 10 Non-Conserved Residues in the Core Protein of JFH-1 Hepatitis C Virus Improves Its Assembly and Secretion. PLoS ONE, 2015, 10, e0137182.	1.1	6
90	The Hepatitis C Virus-Induced Membranous Web in Liver Tissue. Cells, 2018, 7, 191.	1.8	6

#	Article	IF	CITATIONS
91	Endoplasmic Reticulum Detergent-Resistant Membranes Accommodate Hepatitis C Virus Proteins for Viral Assembly. Cells, 2019, 8, 487.	1.8	6
92	Mixing particles from various HCV genotypes increases the HBVâ€HCV vaccine ability to elicit broadly crossâ€neutralizing antibodies. Liver International, 2020, 40, 1865-1871.	1.9	6
93	DNA-containing and empty hepatitis B virus core particles bind similarly to envelope protein domains. Journal of General Virology, 2000, 81, 1099-1101.	1.3	6
94	Hepatitis Delta Virus Antibodies in Hepatitis B Surface Antigen Asymptomatic Carriers in Senegal. Journal of Infectious Diseases, 1990, 161, 150-151.	1.9	5
95	Orf Skin Ulcer. New England Journal of Medicine, 1997, 337, 1131-1131.	13.9	4
96	Vacuolization in hepatitis B virus-infected hepatocytes. Hepatology, 2003, 37, 1223-1224.	3.6	4
97	Is hepatitis C virus eradication a realistic objective in the absence of a prophylactic vaccine?. Liver International, 2016, 36, 1076-1076.	1.9	4
98	Unravelling the multiple roles of apolipoprotein E in the hepatitis C virus life cycle. Gut, 2017, 66, 759-761.	6.1	4
99	Quantitative analysis of the formation of nucleoprotein complexes between HIV-1 Gag protein and genomic RNA using transmission electron microscopy. Journal of Biological Chemistry, 2022, 298, 101500.	1.6	4
100	Apolipoprotein E, a Crucial Cellular Protein in the Lifecycle of Hepatitis Viruses. International Journal of Molecular Sciences, 2022, 23, 3676.	1.8	4
101	IL-26 inhibits hepatitis C virus replication in hepatocytes. Journal of Hepatology, 2022, 76, 822-831.	1.8	4
102	A novel domain within the CIL regulates egress of IFITM3 from the Golgi and reveals a regulatory role of IFITM3 on the secretory pathway. Life Science Alliance, 2022, 5, e202101174.	1.3	3
103	Storage-Induced Micro-Erythrocytes Can Be Quantified and Sorted by Flow Cytometry. Frontiers in Physiology, 2022, 13, 838138.	1.3	1
104	Pathology Assessments of Multiple Organs in Fatal COVID-19 in Intensive Care Unit vs. Non-intensive Care Unit Patients. Frontiers in Medicine, 2022, 9, 837258.	1.2	1
105	A morphometric analysis of hepatitis B subviral particles shows no correlation of filament proportion and length with clinical stage and genotype. Journal of Viral Hepatitis, 0, , .	1.0	1