## Lucio Frigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1979130/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Laser-photobiomodulation on titanium implant bone healing in rat model: comparison between 660-<br>and 808-nm wavelength. Lasers in Medical Science, 2022, 37, 2179-2184.                                                                                                              | 2.1 | 4         |
| 2  | Laserterapia de baixa intensidade e seus efeitos sobre a dor, edema, trismo e parestesia: uma revisão<br>integrativa da literatura. Research, Society and Development, 2021, 10, e9210212159.                                                                                          | 0.1 | 1         |
| 3  | Performance of Nano-Hydroxyapatite/Beta-Tricalcium Phosphate and Xenogenic Hydroxyapatite on<br>Bone Regeneration in Rat Calvarial Defects: Histomorphometric, Immunohistochemical and<br>Ultrastructural Analysis. International Journal of Nanomedicine, 2021, Volume 16, 3473-3485. | 6.7 | 17        |
| 4  | Repair of Critical Size Bone Defects Using Synthetic Hydroxyapatite or Xenograft with or without the<br>Bone Marrow Mononuclear Fraction: A Histomorphometric and Immunohistochemical Study in Rat<br>Calvaria. Materials, 2021, 14, 2854.                                             | 2.9 | 6         |
| 5  | Osteopontin and Vascular Endothelial Growth Factor-Immunoreactivity in Critical Bone Defects<br>Matrix Production: A Nano-Hydroxyapatite/Beta-Tricalcium Phosphate and Xenogeneic Hydroxyapatite<br>Comparison. Minerals (Basel, Switzerland), 2021, 11, 1048.                         | 2.0 | Ο         |
| 6  | Histomorphometric Evaluation of Bone-Guided Regeneration in Maxillary Sinus Floor Augmentation<br>Using Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite Biomaterial: A Case Report.<br>International Medical Case Reports Journal, 2021, Volume 14, 697-706.                   | 0.8 | 1         |
| 7  | Histomorphometric, Immunohistochemical, Ultrastructural Characterization of a<br>Nano-Hydroxyapatite/Beta-Tricalcium Phosphate Composite and a Bone Xenograft in Sub-Critical Size<br>Bone Defect in Rat Calvaria. Materials, 2020, 13, 4598.                                          | 2.9 | 14        |
| 8  | Laser-photobiomodulation on experimental cancer pain model in Walker Tumor-256. Journal of<br>Photochemistry and Photobiology B: Biology, 2020, 210, 111979.                                                                                                                           | 3.8 | 3         |
| 9  | Can photobiomodulation therapy be an alternative to pharmacological therapies in decreasing the progression of skeletal muscle impairments of mdx mice?. PLoS ONE, 2020, 15, e0236689.                                                                                                 | 2.5 | 5         |
| 10 | Precision brackets for upper lateral incisors in Bioprogressive therapy. Microscopy Research and Technique, 2019, 82, 2049-2053.                                                                                                                                                       | 2.2 | 2         |
| 11 | High doses of laser phototherapy can increase proliferation in melanoma stromal connective tissue.<br>Lasers in Medical Science, 2018, 33, 1215-1223.                                                                                                                                  | 2.1 | 10        |
| 12 | Comparison of Photobiomodulation and Anti-Inflammatory Drugs on Tissue Repair on<br>Collagenase-Induced Achilles Tendon Inflammation in Rats. Photomedicine and Laser Surgery, 2018, 36,<br>137-145.                                                                                   | 2.0 | 22        |
| 13 | Effect of GaAlAs low-level laser therapy on mouth opening after orthognathic surgery. Lasers in<br>Medical Science, 2018, 33, 1271-1277.                                                                                                                                               | 2.1 | 10        |
| 14 | Laser photobiomodulation in pressure ulcer healing of human diabetic patients: gene expression analysis of inflammatory biochemical markers. Lasers in Medical Science, 2018, 33, 165-171.                                                                                             | 2.1 | 55        |
| 15 | Photobiomodulation therapy protects skeletal muscle and improves muscular function of mdx mice in<br>a dose-dependent manner through modulation of dystrophin. Lasers in Medical Science, 2018, 33,<br>755-764.                                                                        | 2.1 | 14        |
| 16 | Laser Photobiomodulation Over Teeth Subjected to Orthodontic Movement. Photomedicine and Laser<br>Surgery, 2018, 36, 647-652.                                                                                                                                                          | 2.0 | 2         |
| 17 | Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal<br>muscle injury induced by contusion in rats—part 1: morphological and functional aspects. Lasers in<br>Medical Science, 2017, 32, 2111-2120.                                      | 2.1 | 23        |
| 18 | Laser photobiomodulation of pro-inflammatory mediators on Walker Tumor 256 induced rats. Journal of Photochemistry and Photobiology B: Biology, 2017, 177, 69-75.                                                                                                                      | 3.8 | 14        |

Lucio Frigo

| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal<br>muscle injury induced by contusion in rats—part 2: biochemical aspects. Lasers in Medical Science,<br>2017, 32, 1879-1887.                                      | 2.1 | 24        |
| 20 | Low-Level Laser Therapy and Cryotherapy as Mono- and Adjunctive Therapies for Achilles Tendinopathy in Rats. Photomedicine and Laser Surgery, 2017, 35, 32-42.                                                                                                        | 2.0 | 25        |
| 21 | Comparative Study of the Physiotherapeutic and Drug Protocol and Low-Level Laser Irradiation in the<br>Treatment of Pain Associated with Temporomandibular Dysfunction. Photomedicine and Laser Surgery,<br>2016, 34, 652-656.                                        | 2.0 | 26        |
| 22 | Isolated and combined effects of photobiomodulation therapy, topical nonsteroidal<br>anti-inflammatory drugs, and physical activity in the treatment of osteoarthritis induced by papain.<br>Journal of Biomedical Optics, 2016, 21, 108001.                          | 2.6 | 27        |
| 23 | Evaluation of low-level laser therapy in the treatment of masticatory muscles spasticity in children with cerebral palsy. Journal of Biomedical Optics, 2016, 21, 028001.                                                                                             | 2.6 | 16        |
| 24 | The thermal impact of phototherapy with concurrent super-pulsed lasers and red and infrared LEDs on human skin. Lasers in Medical Science, 2015, 30, 1575-1581.                                                                                                       | 2.1 | 41        |
| 25 | Evaluation of the Proliferative Effects Induced by Low-Level Laser Therapy in Bone Marrow Stem Cell<br>Culture. Photomedicine and Laser Surgery, 2015, 33, 610-616.                                                                                                   | 2.0 | 44        |
| 26 | The low level laser therapy (LLLT) operating in 660Ânm reduce gene expression of inflammatory<br>mediators in the experimental model of collagenase-induced rat tendinitis. Lasers in Medical Science,<br>2015, 30, 1985-1990.                                        | 2.1 | 22        |
| 27 | The effect of inhaled nitric oxide on the carrageenan-induced paw edema. Histology and Histopathology, 2015, 30, 117-24.                                                                                                                                              | 0.7 | 2         |
| 28 | Superpulsed Low-Level Laser Therapy Protects Skeletal Muscle of mdx Mice against Damage,<br>Inflammation and Morphological Changes Delaying Dystrophy Progression. PLoS ONE, 2014, 9, e89453.                                                                         | 2.5 | 33        |
| 29 | What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle<br>injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy?. Lasers in<br>Medical Science, 2014, 29, 653-658.                         | 2.1 | 46        |
| 30 | Low-level laser therapy in different stages of rheumatoid arthritis: a histological study. Lasers in<br>Medical Science, 2013, 28, 529-536.                                                                                                                           | 2.1 | 53        |
| 31 | Lowâ€Level Laser Therapy and Sodium Diclofenac in Acute Inflammatory Response Induced by Skeletal<br>Muscle Trauma: Effects in Muscle Morphology and m <scp>RNA</scp> Gene Expression of Inflammatory<br>Markers. Photochemistry and Photobiology, 2013, 89, 501-507. | 2.5 | 42        |
| 32 | Effect of simvastatin on passive strainâ€induced skeletal muscle injury in rats. Muscle and Nerve, 2012,<br>46, 899-907.                                                                                                                                              | 2.2 | 0         |
| 33 | Histomorphometric analysis of inflammatory response and necrosis in re-implanted central incisor of rats treated with low-level laser therapy. Lasers in Medical Science, 2012, 27, 551-557.                                                                          | 2.1 | 18        |
| 34 | Infrared (810 nm) Low‣evel Laser Therapy in Experimental Model of Strainâ€Induced Skeletal Muscle<br>Injury in Rats: Effects on Functional Outcomes. Photochemistry and Photobiology, 2012, 88, 154-160.                                                              | 2.5 | 29        |
| 35 | Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers in Medical Science, 2012, 27, 71-78.                                                                                                                                          | 2.1 | 127       |
| 36 | Infrared (810 nm) Lowâ€level Laser Therapy in Rat Achilles Tendinitis: A Consistent Alternative to Drugs.<br>Photochemistry and Photobiology, 2011, 87, 1447-1452.                                                                                                    | 2.5 | 46        |

Lucio Frigo

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Supportive Care in Cancer, 2011, 19, 1069-1077.                                                                           | 2.2 | 234       |
| 38 | In vitro analysis of human tooth pulp chamber temperature after low-intensity laser therapy at different power outputs. Lasers in Medical Science, 2011, 26, 143-147.                                                                                      | 2.1 | 10        |
| 39 | Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in<br>short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results.<br>Lasers in Medical Science, 2011, 26, 493-501.   | 2.1 | 85        |
| 40 | Effects of Low-Level Laser Therapy (LLLT) in the Development of Exercise-Induced Skeletal Muscle<br>Fatigue and Changes in Biochemical Markers Related to Postexercise Recovery. Journal of Orthopaedic<br>and Sports Physical Therapy, 2010, 40, 524-532. | 3.5 | 164       |
| 41 | Low-Level Laser Irradiation (InGaAlP-660 nm) Increases Fibroblast Cell Proliferation and Reduces Cell<br>Death in a Dose-Dependent Manner. Photomedicine and Laser Surgery, 2010, 28, S-151-S-156.                                                         | 2.0 | 48        |
| 42 | The effect of low-level laser irradiation (In-Ga-Al-AsP - 660 nm) on melanoma in vitro and in vivo. BMC<br>Cancer, 2009, 9, 404.                                                                                                                           | 2.6 | 72        |
| 43 | Caracterização da variabilidade de freqüência cardÃaca e sensibilidade do barorreflexo em indivÃduos<br>sedentários e atletas do sexo masculino. Revista Brasileira De Medicina Do Esporte, 2007, 13, 231-236.                                             | 0.2 | 12        |
| 44 | Effect of GaAlAs Laser on Reactional Dentinogenesis Induction in Human Teeth. Photomedicine and Laser Surgery, 2006, 24, 358-365.                                                                                                                          | 2.0 | 67        |
| 45 | Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor<br>necrosis factor α-mediated smooth airway muscle dysfunction. Lasers in Surgery and Medicine, 2006,<br>38, 773-778.                                     | 2.1 | 43        |
| 46 | Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. Journal of Applied Physiology, 2006, 101, 283-288.                                                                                       | 2.5 | 150       |
| 47 | Analgesic Effect of He-Ne (632.8 nm) Low-Level Laser Therapy on Acute Inflammatory Pain.<br>Photomedicine and Laser Surgery, 2005, 23, 177-181.                                                                                                            | 2.0 | 100       |
| 48 | Evaluation of the analgesic effect of low-power optical radiation in acute inflammatory process. ,<br>2004, , .                                                                                                                                            |     | 0         |
| 49 | Urocortin in the central nervous system of a primate ( <i>Cebus apella</i> ): Sequencing,<br>immunohistochemical, and hybridization histochemical characterization. Journal of Comparative<br>Neurology, 2003, 463, 157-175.                               | 1.6 | 74        |
| 50 | Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus. Neuroscience, 2002, 115, 899-915.                                                                                                                       | 2.3 | 37        |
| 51 | The distribution of melanin-concentrating hormone in the monkey brain (Cebus apella). Brain<br>Research, 1998, 804, 140-143.                                                                                                                               | 2.2 | 34        |