
Elisabeth Garanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1978994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules, 2021, 22, 76-85.	2.6	20
2	Coupling of RAFT polymerization and chemoselective post-modifications of elastin-like polypeptides for the synthesis of gene delivery hybrid vectors. Polymer Chemistry, 2021, 12, 226-241.	1.9	7
3	Thermosensitive Hybrid Elastin-like Polypeptide-Based ABC Triblock Hydrogel. Macromolecules, 2021, 54, 327-340.	2.2	23
4	Multivalent Elastin-Like Glycopolypeptides: Subtle Chemical Structure Modifications with High Impact on Lectin Binding Affinity. ACS Macro Letters, 2021, 10, 65-70.	2.3	6
5	Thermosensitive Vesicles from Chemically Encoded Lipidâ€Grafted Elastinâ€like Polypeptides. Angewandte Chemie - International Edition, 2021, 60, 15036-15040.	7.2	24
6	Thermosensitive Vesicles from Chemically Encoded Lipidâ€Grafted Elastinâ€like Polypeptides. Angewandte Chemie, 2021, 133, 15163-15167.	1.6	6
7	Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers, 2021, 13, 1470.	2.0	15
8	Photooxidation Responsive Elastin-Like Polypeptide Conjugates for Photodynamic Therapy Application. Bioconjugate Chemistry, 2021, 32, 1719-1728.	1.8	7
9	Spatiotemporal Dynamic Assembly/Disassembly of Organelleâ€Mimics Based on Intrinsically Disordered Proteinâ€Polymer Conjugates. Advanced Science, 2021, 8, e2102508.	5.6	21
10	Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules, 2021, 22, 4956-4966.	2.6	16
11	Design of Polysaccharide- <i>b</i> -Elastin-Like Polypeptide Bioconjugates and Their Thermoresponsive Self-Assembly. Biomacromolecules, 2020, 21, 114-125.	2.6	43
12	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie - International Edition, 2020, 59, 622-626.	7.2	129
13	Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides. Angewandte Chemie, 2020, 132, 632-636.	1.6	26
14	Titelbild: Aqueous Ringâ€Opening Polymerizationâ€Induced Selfâ€Assembly (ROPISA) of Nâ€Carboxyanhydrides (Angew. Chem. 2/2020). Angewandte Chemie, 2020, 132, 517-517.	1.6	0
15	Hyaluronicâ€Acidâ€Presenting Selfâ€Assembled Nanoparticles Transform a Hyaluronidase HYAL1 Substrate into an Efficient and Selective Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 13591-13596.	7.2	15
16	Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International Journal of Pharmaceutics, 2020, 586, 119537.	2.6	19
17	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie, 2020, 132, 11121-11129.	1.6	19
18	Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie - International Edition, 2020, 59, 11028-11036.	7.2	53

ELISABETH GARANGER

#	Article	IF	CITATIONS
19	Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomaterialia, 2019, 99, 154-167.	4.1	40
20	Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. Journal of Colloid and Interface Science, 2019, 557, 777-792.	5.0	13
21	Self-Assembly of PEG- <i>b</i> -PTMC Copolymers: Micelles and Polymersomes Size Control. Langmuir, 2019, 35, 13364-13374.	1.6	25
22	Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications. Journal of Biotechnology, 2019, 298, 35-44.	1.9	25
23	Expanding the Toolbox of Chemoselective Modifications of Protein-Like Polymers at Methionine Residues. ACS Macro Letters, 2019, 8, 1648-1653.	2.3	18
24	Self-Assembly of Stimuli-Responsive Biohybrid Synthetic- <i>b</i> -Recombinant Block Copolypeptides. Biomacromolecules, 2019, 20, 254-272.	2.6	17
25	Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7, 646-650.	2.3	21
26	Characterisation of hydration and nanophase separation during the temperature response in hydrophobic/hydrophilic elastin-like polypeptide (ELP) diblock copolymers. Soft Matter, 2017, 13, 1816-1822.	1.2	24
27	Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation. Biomacromolecules, 2017, 18, 544-550.	2.6	49
28	Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains. Bioconjugate Chemistry, 2017, 28, 1403-1412.	1.8	40
29	Design and self-assembly of PBLG- <i>b</i> -ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides. Organic and Biomolecular Chemistry, 2017, 15, 10095-10104.	1.5	23
30	Monocore <i>vs.</i> multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Molecular Systems Design and Engineering, 2017, 2, 629-639.	1.7	54
31	Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorganic Chemistry, 2017, 56, 8232-8243.	1.9	83
32	Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. Journal Physics D: Applied Physics, 2016, 49, 274002.	1.3	58
33	Recombinant production and purification of short hydrophobic Elastin-like polypeptides with low transition temperatures. Protein Expression and Purification, 2016, 121, 81-87.	0.6	23
34	Precision polymers with biological activity: Design towards self-assembly and bioactivity. Comptes Rendus Chimie, 2016, 19, 143-147.	0.2	10
35	Thermosensitive polymer-grafted iron oxide nanoparticles studied by <i>in situ</i> dynamic light backscattering under magnetic hyperthermia. Journal Physics D: Applied Physics, 2015, 48, 494001.	1.3	23
36	Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. Protein Expression and Purification, 2015, 110, 165-171.	0.6	14

ELISABETH GARANGER

#	Article	IF	CITATIONS
37	Quantitative Side-Chain Modifications of Methionine-Containing Elastin-Like Polypeptides as a Versatile Tool to Tune Their Properties. ACS Macro Letters, 2015, 4, 1283-1286.	2.3	49
38	Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules, 2015, 48, 6617-6627.	2.2	33
39	Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. European Polymer Journal, 2015, 62, 363-373.	2.6	27
40	Nano-Encapsulation of Plitidepsin: In Vivo Pharmacokinetics, Biodistribution, and Efficacy in a Renal Xenograft Tumor Model. Pharmaceutical Research, 2014, 31, 983-991.	1.7	21
41	Enzyme-Degradable Self-Assembled Nanostructures from Polymer–Peptide Hybrids. Biomacromolecules, 2014, 15, 1882-1888.	2.6	63
42	Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
43	Biofunctional micellar nanoparticles from peptide-b-polymer chimeras. Polymer Chemistry, 2013, 4, 2011.	1.9	9
44	Self-assembled core–shell micelles from peptide-b-polymer molecular chimeras towards structure–activity relationships. Faraday Discussions, 2013, 166, 83.	1.6	11
45	Single Reporter for Targeted Multimodal in Vivo Imaging. Journal of the American Chemical Society, 2012, 134, 5149-5156.	6.6	45
46	Towards Bioactive Nanovehicles Based on Protein Polymers. Angewandte Chemie - International Edition, 2012, 51, 3060-3062.	7.2	44
47	A simple method to achieve high doxorubicin loading in biodegradable polymersomes. Journal of Controlled Release, 2010, 147, 428-435.	4.8	317
48	Divergent Oriented Synthesis For the Design of Reagents for Protein Conjugation. ACS Combinatorial Science, 2010, 12, 57-64.	3.3	13
49	Clustering and Internalization of Integrin αvβ3 With a Tetrameric RGD-synthetic Peptide. Molecular Therapy, 2009, 17, 837-843.	3.7	148
50	Molecular MRI of Cardiomyocyte Apoptosis With Simultaneous Delayed-Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes In Vivo. Circulation: Cardiovascular Imaging, 2009, 2, 460-467.	1.3	92
51	A Multifunctional Single-Attachment-Point Reagent for Controlled Protein Biotinylation. Bioconjugate Chemistry, 2009, 20, 170-173.	1.8	7
52	A DNA-binding Gd chelate for the detection of cell death by MRI. Chemical Communications, 2009, , 4444.	2.2	38
53	Synthesis and Biological Characterisation of Targeted Proâ€Apoptotic Peptide. ChemBioChem, 2008, 9, 2326-2332.	1.3	36
54	Simplified syntheses of complex multifunctional nanomaterials. Chemical Communications, 2008, , 4792.	2.2	38

ELISABETH GARANGER

#	Article	IF	CITATIONS
55	Tumor Targeting with RGD Peptide Ligands-Design of New Molecular Conjugates for Imaging and Therapy of Cancers. Anti-Cancer Agents in Medicinal Chemistry, 2007, 7, 552-558.	0.9	169
56	Multivalent RGD synthetic peptides as potent αVβ3integrin ligands. Organic and Biomolecular Chemistry, 2006, 4, 1958-1965.	1.5	76
57	Noninvasive Optical Imaging of Ovarian Metastases Using Cy5-labeled RAFT-c(-RGDfK-) ₄ . Molecular Imaging, 2006, 5, 7290.2006.00022.	0.7	53
58	Chemoselectively Addressable Template:Â A Valuable Tool for the Engineering of Molecular Conjugates. Journal of Organic Chemistry, 2006, 71, 2402-2410.	1.7	36
59	Luminescent probes for optical in vivo imaging. , 2005, , .		5
60	New Multifunctional Molecular Conjugate Vector for Targeting, Imaging, and Therapy of Tumors. Molecular Therapy, 2005, 12, 1168-1175.	3.7	85
61	Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis. Journal of the American Chemical Society, 2004, 126, 5730-5739.	6.6	202
62	Physicochemical Studies of Caroubin:Â A Gluten-like Protein. Journal of Agricultural and Food Chemistry, 2001, 49, 3414-3419.	2.4	46