Paul Sanberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1978831/publications.pdf Version: 2024-02-01

DALLI SANREDC

#	Article	IF	CITATIONS
1	Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS. PLoS ONE, 2007, 2, e1205.	2.5	197
2	Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Research, 2007, 1157, 126-137.	2.2	195
3	Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12483-12488.	7.1	183
4	Impaired blood–brain/spinal cord barrier in ALS patients. Brain Research, 2012, 1469, 114-128.	2.2	183
5	Long-Term Upregulation of Inflammation and Suppression of Cell Proliferation in the Brain of Adult Rats Exposed to Traumatic Brain Injury Using the Controlled Cortical Impact Model. PLoS ONE, 2013, 8, e53376.	2.5	159
6	Mannitol facilitates neurotrophic factor upâ€regulation and behavioural recovery in neonatal hypoxicâ€ischaemic rats with human umbilical cord blood grafts. Journal of Cellular and Molecular Medicine, 2010, 14, 914-921.	3.6	133
7	Alpha‣ynuclein as a Pathological Link Between Chronic Traumatic Brain Injury and Parkinson's Disease. Journal of Cellular Physiology, 2015, 230, 1024-1032.	4.1	127
8	Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Research, 2009, 1287, 157-163.	2.2	126
9	Luteolin Reduces Alzheimer's Disease Pathologies Induced by Traumatic Brain Injury. International Journal of Molecular Sciences, 2014, 15, 895-904.	4.1	117
10	Blood-CNS Barrier Impairment in ALS patients versus an animal model. Frontiers in Cellular Neuroscience, 2014, 8, 21.	3.7	114
11	Amyotrophic lateral sclerosis: A neurovascular disease. Brain Research, 2011, 1398, 113-125.	2.2	103
12	Combination Therapy of Human Umbilical Cord Blood Cells and Granulocyte Colony Stimulating Factor Reduces Histopathological and Motor Impairments in an Experimental Model of Chronic Traumatic Brain Injury. PLoS ONE, 2014, 9, e90953.	2.5	94
13	Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose. PLoS ONE, 2008, 3, e2494.	2.5	90
14	Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplantation, 2009, 18, 985-998.	2.5	88
15	Recent Studies Assessing the Proliferative Capability of a Novel Adult Stem Cell Identified in Menstrual Blood. Open Stem Cell Journal, 2011, 3, 4-10.	2.0	80
16	Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6542-6547.	7.1	79
17	Mannitol-Enhanced Delivery of Stem Cells and Their Growth Factors across the Blood–Brain Barrier. Cell Transplantation, 2014, 23, 531-539	2.5	72
18	Human Cord Blood Cells and Myocardial Infarction: Effect of Dose and Route of Administration on Infarct Size. Cell Transplantation, 2007, 16, 907-917.	2.5	71

#	Article	IF	CITATIONS
19	The Treatment of Neurodegenerative Disorders Using Umbilical Cord Blood and Menstrual Blood-Derived Stem Cells. Cell Transplantation, 2011, 20, 85-94.	2.5	65
20	Quantitative analyses of matrix metalloproteinase activity after traumatic brain injury in adult rats. Brain Research, 2009, 1280, 172-177.	2.2	64
21	Human Umbilical Cord Blood Progenitor Cells are Attracted to Infarcted Myocardium and Significantly Reduce Myocardial Infarction Size. Cell Transplantation, 2006, 15, 647-658.	2.5	62
22	Permeating the Blood Brain Barrier and Abrogating the Inflammation in Stroke: Implications for Stroke Therapy. Current Pharmaceutical Design, 2012, 18, 3670-3676.	1.9	61
23	MIP-1α and MCP-1 Induce Migration of Human Umbilical Cord Blood Cells in Models of Stroke. Current Neurovascular Research, 2008, 5, 118-124.	1.1	59
24	Optimized Turmeric Extracts have Potent Anti-Amyloidogenic Effects. Current Alzheimer Research, 2009, 6, 564-571.	1.4	55
25	Optimized Turmeric Extract Reduces ?-Amyloid and Phosphorylated Tau Protein Burden in Alzheimer's Transgenic Mice. Current Alzheimer Research, 2012, 9, 500-506.	1.4	55
26	Blood-Brain Barrier Alterations Provide Evidence of Subacute Diaschisis in an Ischemic Stroke Rat Model. PLoS ONE, 2013, 8, e63553.	2.5	53
27	Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS. PLoS ONE, 2012, 7, e31254.	2.5	53
28	Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation. PLoS ONE, 2010, 5, e10496.	2.5	52
29	Compromised blood–brain barrier competence in remote brain areas in ischemic stroke rats at the chronic stage. Journal of Comparative Neurology, 2014, 522, 3120-3137.	1.6	51
30	Influence of Post-Traumatic Stress Disorder on Neuroinflammation and Cell Proliferation in a Rat Model of Traumatic Brain Injury. PLoS ONE, 2013, 8, e81585.	2.5	48
31	Increased Amyloid Precursor Protein and Tau Expression Manifests as Key Secondary Cell Death in Chronic Traumatic Brain Injury. Journal of Cellular Physiology, 2017, 232, 665-677.	4.1	46
32	Blueberry Opposes <i>β</i> -Amyloid Peptide-Induced Microglial Activation Via Inhibition of p44/42 Mitogen-Activation Protein Kinase. Rejuvenation Research, 2008, 11, 891-901.	1.8	45
33	Monocyte transplantation for neural and cardiovascular ischemia repair. Journal of Cellular and Molecular Medicine, 2010, 14, 553-563.	3.6	44
34	Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice. Neuropharmacology, 2016, 108, 152-160.	4.1	44
35	Neural stem cells for Parkinson's disease: To protect and repair. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11869-11870.	7.1	43
36	Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Molecular and Cellular Neurosciences, 2014, 59, 76-84.	2.2	43

#	Article	IF	CITATIONS
37	Trophic factor induction of human umbilical cord blood cellsin vitroandin vivo. Journal of Neural Engineering, 2007, 4, 130-145.	3.5	41
38	Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplantation, 2018, 27, 310-324.	2.5	40
39	Epidemiological Survey-Based Formulae to Approximate Incidence and Prevalence of Neurological Disorders in the United States: a Meta-Analysis. PLoS ONE, 2013, 8, e78490.	2.5	39
40	Neurological disorders and the potential role for stem cells as a therapy. British Medical Bulletin, 2012, 101, 163-181.	6.9	38
41	Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neuroscience and Biobehavioral Reviews, 2012, 36, 177-190.	6.1	37
42	The innate and adaptive immunological aspects in neurodegenerative diseases. Journal of Neuroimmunology, 2014, 269, 1-8.	2.3	37
43	Implications of blood-brain barrier disruption in ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2008, 9, 375-376.	2.1	35
44	Mankind's first natural stem cell transplant. Journal of Cellular and Molecular Medicine, 2010, 14, 488-495.	3.6	34
45	May the force be with you: Transfer of healthy mitochondria from stem cells to stroke cells. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 367-370.	4.3	34
46	Neurovascular Aspects of Amyotrophic Lateral Sclerosis. International Review of Neurobiology, 2012, 102, 91-106.	2.0	33
47	Reduction of Circulating Endothelial Cells in Peripheral Blood of ALS Patients. PLoS ONE, 2010, 5, e10614.	2.5	32
48	Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Research Bulletin, 2007, 74, 155-163.	3.0	31
49	Plasma derived from human umbilical cord blood: Potential cellâ€∎dditive or cellâ€substitute therapeutic for neurodegenerative diseases. Journal of Cellular and Molecular Medicine, 2018, 22, 6157-6166.	3.6	31
50	Potential Role of Humoral IL-6 Cytokine in Mediating Pro-Inflammatory Endothelial Cell Response in Amyotrophic Lateral Sclerosis. International Journal of Molecular Sciences, 2018, 19, 423.	4.1	30
51	Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Progress in Brain Research, 2012, 201, 99-117.	1.4	29
52	Amelioration of Ischemic Brain Injury in Rats with Human Umbilical Cord Blood Stem Cells: Mechanisms of Action. Cell Transplantation, 2016, 25, 1473-1488.	2.5	29
53	A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction With N-terminal Amyloid Precursor Protein, Reduces β-Amyloid-Associated Pathology, and Improves Cognition. Biological Psychiatry, 2019, 86, 208-220.	1.3	29
54	GFAP expression and social deficits in transgenic mice overexpressing human sAPPα. Clia, 2013, 61, 1556-1569.	4.9	28

#	Article	IF	CITATIONS
55	Blood-Brain Barrier Impairment in an Animal Model of MPS III B. PLoS ONE, 2011, 6, e16601.	2.5	28
56	Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. Journal of Neuroimmunology, 2009, 215, 96-101.	2.3	27
57	Regenerative Medicine for Neurological Disorders. Scientific World Journal, The, 2010, 10, 470-489.	2.1	27
58	Human Umbilical Cord Blood-Derived Monocytes Improve Cognitive Deficits and Reduce Amyloid-β Pathology in PSAPP Mice. Cell Transplantation, 2015, 24, 2237-2250.	2.5	26
59	LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Frontiers in Aging Neuroscience, 2020, 12, 594571.	3.4	26
60	Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping. Neural Regeneration Research, 2015, 10, 1359.	3.0	26
61	Eye Opener in Stroke. Stroke, 2019, 50, 2197-2206.	2.0	25
62	Human Umbilical Cord Blood Mononuclear Cell-Conditioned Media Inhibits Hypoxic-Induced Apoptosis in Human Coronary Artery Endothelial Cells and Cardiac Myocytes by Activation of the Survival Protein Akt. Cell Transplantation, 2013, 22, 1637-1650.	2.5	24
63	Biodistribution of Infused Human Umbilical Cord Blood Cells in Alzheimer's Disease-Like Murine Model. Cell Transplantation, 2016, 25, 195-199.	2.5	24
64	Cell-Free Extracellular Vesicles Derived from Human Bone Marrow Endothelial Progenitor Cells as Potential Therapeutics for Microvascular Endothelium Restoration in ALS. NeuroMolecular Medicine, 2020, 22, 503-516.	3.4	24
65	Human Umbilical Cord Blood Cells Alter Blood and Spleen Cell Populations After Stroke. Translational Stroke Research, 2012, 3, 491-499.	4.2	23
66	Adult Stem Cell Transplantation: Is Gender a Factor in Stemness?. International Journal of Molecular Sciences, 2014, 15, 15225-15243.	4.1	23
67	Gutting the brain of inflammation: A key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson's disease model. Journal of Cellular and Molecular Medicine, 2019, 23, 5466-5474.	3.6	23
68	Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier. Oncotarget, 2018, 9, 10621-10634.	1.8	23
69	Hyperbaric oxygen therapy as a potential treatment for post-traumatic stress disorder associated with traumatic brain injury. Neuropsychiatric Disease and Treatment, 2016, Volume 12, 2689-2705.	2.2	22
70	Human umbilical cord blood mononuclear cells activate the survival protein Akt in cardiac myocytes and endothelial cells that limits apoptosis and necrosis during hypoxia. Translational Research, 2012, 159, 497-506.	5.0	21
71	Phenotypic characteristics of human bone marrow-derived endothelial progenitor cells in vitro support cell effectiveness for repair of the blood-spinal cord barrier in ALS. Brain Research, 2019, 1724, 146428.	2.2	21
72	Refractory Angina Cell Therapy (ReACT) Involving Autologous Bone Marrow Cells in Patients without Left Ventricular Dysfunction: A Possible Role for Monocytes. Cell Transplantation, 2009, 18, 1299-1310.	2.5	20

#	Article	IF	CITATIONS
73	Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia. Journal of Neuropathology and Experimental Neurology, 2016, 75, 673-688.	1.7	20
74	Immunomodulation with Human Umbilical Cord Blood Stem Cells Ameliorates Ischemic Brain Injury – A Brain Transcriptome Profiling Analysis. Cell Transplantation, 2019, 28, 864-873.	2.5	20
75	Human Umbilical Cord Blood Cells Induce Neuroprotective Change in Gene Expression Profile in Neurons after Ischemia through Activation of Akt Pathway. Cell Transplantation, 2015, 24, 721-735.	2.5	19
76	Breaking the Blood–Brain Barrier with Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke Brain. Cell Transplantation, 2016, 25, 1453-1460.	2.5	19
77	Stem Cell Research in Cell Transplantation: Sources, Geopolitical Influence, and Transplantation. Cell Transplantation, 2010, 19, 1493-1509.	2.5	17
78	Intravenous administration of human umbilical cord blood cells in an animal model of MPS III B. Journal of Comparative Neurology, 2009, 515, 93-101.	1.6	16
79	G-CSF as an Adjunctive Therapy with Umbilical Cord Blood Cell Transplantation for Traumatic Brain Injury. Cell Transplantation, 2015, 24, 447-457.	2.5	16
80	Immunological Aspects in Amyotrophic Lateral Sclerosis. Translational Stroke Research, 2012, 3, 331-340.	4.2	15
81	Repeated Administrations of Human Umbilical Cord Blood Cells Improve Disease Outcomes in a Mouse Model of Sanfilippo Syndrome Type III B. Cell Transplantation, 2014, 23, 1613-1630.	2.5	15
82	Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regenerative Medicine, 2014, 9, 409-412.	1.7	14
83	Plasma and brain pharmacokinetics of previously unexplored lithium salts. RSC Advances, 2014, 4, 12362-12365.	3.6	14
84	Potential new complication in drug therapy development for amyotrophic lateral sclerosis. Expert Review of Neurotherapeutics, 2016, 16, 1397-1405.	2.8	14
85	Effects of sertoli cell-conditioned medium on ventral midbrain neural stem cells: A preliminary report. Neurotoxicity Research, 2008, 13, 241-246.	2.7	13
86	Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regenerative Medicine, 2010, 5, 45-54.	1.7	13
87	Translating laboratory discovery to the clinic: From nicotine and mecamylamine to Tourette's, depression, and beyond. Physiology and Behavior, 2012, 107, 801-808.	2.1	13
88	Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy, 2014, 16, 1158-1168.	0.7	13
89	Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interventional Medicine & Applied Science, 2012, 4, 59-68.	0.2	12
90	Bone Marrow-Derived Stem Cell Therapy for Metastatic Brain Cancers. Cell Transplantation, 2015, 24, 625-630.	2.5	12

#	Article	IF	CITATIONS
91	The Effect of Human Umbilical Cord Blood Cells on Survival and Cytokine Production by Post-Ischemic Astrocytes in Vitro. Stem Cell Reviews and Reports, 2010, 6, 523-531.	5.6	10
92	Specific antibody binding to the APP672–699 region shifts APP processing from α- to β-cleavage. Cell Death and Disease, 2014, 5, e1374-e1374.	6.3	9
93	Long-Term and Sustained Therapeutic Results of a Specific Promonocyte Cell Formulation in Refractory Angina: ReACT [®] (Refractory Angina Cell Therapy) Clinical Update and Cost-Effective Analysis. Cell Transplantation, 2015, 24, 955-970.	2.5	9
94	Plasma Derived from Human Umbilical Cord Blood Modulates Mitogen-Induced Proliferation of Mononuclear Cells Isolated from the Peripheral Blood of ALS Patients. Cell Transplantation, 2016, 25, 963-971.	2.5	9
95	Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy, 2017, 17, 837-851.	3.1	8
96	Human Umbilical Cord Blood Serum–derived α-Secretase. Cell Transplantation, 2018, 27, 438-455.	2.5	8
97	Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model. Journal of Neuroscience Methods, 2009, 180, 52-56.	2.5	7
98	A Hallmark Clinical Study of Cord Blood Therapy in Adults with Ischemic Stroke. Cell Transplantation, 2019, 28, 1329-1332.	2.5	7
99	Suppressed acoustic startle response in traumatic brain injury masks post-traumatic stress disorder hyper-responsivity. NeuroReport, 2018, 29, 939-944.	1.2	6
100	The potential of neural stem cell transplantation for the treatment of fetal alcohol spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 149-156.	4.8	5
101	Detection of endothelial cell-associated human DNA reveals transplanted human bone marrow stem cell engraftment into CNS capillaries of ALS mice. Brain Research Bulletin, 2021, 170, 22-28.	3.0	5
102	Intraventricular Implant of Encapsulated CNTF-Secreting Fibroblasts Ameliorates Motor Deficits in Aged Rats. Current Aging Science, 2008, 1, 105-111.	1.2	5
103	Retrospective Case Series of Traumatic Brain Injury and Post-Traumatic Stress Disorder Treated with Hyperbaric Oxygen Therapy. Cell Transplantation, 2019, 28, 885-892.	2.5	4
104	Brazilian Jiu Jitsu Training for US Service Members and Veterans with Symptoms of PTSD. Military Medicine, 2019, 184, e626-e631.	0.8	4
105	Empathy in stroke rats is modulated by social settings. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1182-1192.	4.3	4
106	Human Cord Blood Serum-Derived APP α-Secretase Cleavage Activity is Mediated by C1 Complement. Cell Transplantation, 2018, 27, 666-676.	2.5	3
107	A â€~stroke' of genius: celebrating the 20-year anniversary of the Bernard Sanberg Memorial Award for Brain Repair. Regenerative Medicine, 2019, 14, 811-813.	1.7	3
108	Effects of nutraceutical intervention on serum proteins in aged rats. GeroScience, 2020, 42, 703-713.	4.6	3

#	Article	IF	CITATIONS
109	ASNTR's Venture into a Hybrid Conference: Lessons Learned During the COVID-19 Pandemic. Cell Transplantation, 2021, 30, 096368972110538.	2.5	3
110	A comparison of dopaminergic cells from the human NTera2/D1 cell line transplanted into the hemiparkinsonian rat. Life Sciences, 2007, 81, 441-448.	4.3	2
111	The â€~current state of play' in transplantation and restoration research of the CNS. Neurotoxicity Research, 2007, 11, 145-150.	2.7	2
112	Rewarding academic innovation. Science, 2014, 346, 928-929.	12.6	2
113	Sangue de cordão umbilical para uso autólogo ou grupo de pacientes especiais. Revista Brasileira De Hematologia E Hemoterapia, 0, 31, 36-44.	0.7	1
114	Celebrating neural repair. Journal of Comparative Neurology, 2009, 515, 1-3.	1.6	1
115	STEPS toward the Right Direction. Cell Transplantation, 2009, 18, 689-689.	2.5	1
116	A Showcase of Bench-to-Bedside Regenerative Medicine at the 2010 ASNTR. Scientific World Journal, The, 2011, 11, 1842-1864.	2.1	1
117	Updates on and Advances in Therapeutic Strategies for Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1116-1117.	2.5	1
118	Geoffrey Raisman, 1939-2017: "Opening a Scientific Door and Giving Hope― Cell Transplantation, 2017, 26, 733-734.	2.5	1
119	Recent Patents in Cell Therapy for Amyotrophic Lateral Sclerosis. Recent Patents on Regenerative Medicine, 2015, 5, 10-19.	0.4	1
120	Article Commentary: Technology and Innovation: 2010 a Year in Review. Cell Transplantation, 2011, 20, 1315-1318.	2.5	0
121	A Retrospective Look at Recent COVID-19 Articles Published in Cell Transplantation: Research Leading to Further Understanding. Cell Transplantation, 2021, 30, 096368972110498.	2.5	0
122	ASNTR's Venture into a Hybrid Conference: Lessons Learned During the COVID-19 Pandemic. Cell Transplantation, 2021, 30, 9636897211053872.	2.5	0