Marina E Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1978308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positive Allosteric Modulation of mGlu1 Reverses Cocaine-Induced Behavioral and Synaptic Plasticity Through the Integrated Stress Response and Oligophrenin-1. Biological Psychiatry, 2022, 92, 871-879.	0.7	8
2	Cocaine and chronic stress exposure produce an additive increase in neuronal activity in the basolateral amygdala. Addiction Biology, 2021, 26, e12848.	1.4	11
3	mGlu5 function in the nucleus accumbens core during the incubation of methamphetamine craving. Neuropharmacology, 2021, 186, 108452.	2.0	15
4	GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. Journal of Neuroscience, 2021, 41, 8262-8277.	1.7	8
5	CaMKII Modulates Diacylglycerol Lipase-α Activity in the Rat Nucleus Accumbens after Incubation of Cocaine Craving. ENeuro, 2021, 8, ENEURO.0220-21.2021.	0.9	5
6	AMPA receptor and metabotropic glutamate receptor 1 adaptations in the nucleus accumbens core during incubation of methamphetamine craving. Neuropsychopharmacology, 2019, 44, 1534-1541.	2.8	26
7	mGlu1 tonically regulates levels of calciumâ€permeable <scp>AMPA</scp> receptors in cultured nucleus accumbens neurons through retinoic acid signaling and protein translation. European Journal of Neuroscience, 2019, 50, 2590-2601.	1.2	11
8	Labile Calcium-Permeable AMPA Receptors Constitute New Glutamate Synapses Formed in Hypothalamic Neuroendocrine Cells during Salt Loading. ENeuro, 2019, 6, ENEURO.0112-19.2019.	0.9	7
9	Withdrawal From Cocaine Self-administration Alters the Regulation of Protein Translation in the Nucleus Accumbens. Biological Psychiatry, 2018, 84, 223-232.	0.7	18
10	Cascades of Homeostatic Dysregulation Promote Incubation of Cocaine Craving. Journal of Neuroscience, 2018, 38, 4316-4328.	1.7	39
11	Protein Translation in the Nucleus Accumbens Is Dysregulated during Cocaine Withdrawal and Required for Expression of Incubation of Cocaine Craving. Journal of Neuroscience, 2018, 38, 2683-2697.	1.7	32
12	Repeated restraint stress exposure during early withdrawal accelerates incubation of cueâ€induced cocaine craving. Addiction Biology, 2018, 23, 80-89.	1.4	25
13	Emergence of Endocytosis-Dependent mGlu1 LTD at Nucleus Accumbens Synapses After Withdrawal From Cocaine Self-Administration. Frontiers in Synaptic Neuroscience, 2018, 10, 36.	1.3	15
14	lonotropic and metabotropic glutamate receptors regulate protein translation in co-cultured nucleus accumbens and prefrontal cortex neurons. Neuropharmacology, 2018, 140, 62-75.	2.0	5
15	Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons. Neuropharmacology, 2017, 116, 224-232.	2.0	18
16	Circuit and Synaptic Plasticity Mechanisms of Drug Relapse. Journal of Neuroscience, 2017, 37, 10867-10876.	1.7	143
17	Prolonged withdrawal from cocaine selfâ€administration affects prefrontal cortex―and basolateral amygdala–nucleus accumbens core circuits but not accumbens GABAergic local interneurons. Addiction Biology, 2017, 22, 1682-1694.	1.4	6
18	Dynamic Alterations of Rat Nucleus Accumbens Dendritic Spines over 2 Months of Abstinence from Extended-Access Cocaine Self-Administration. Neuropsychopharmacology, 2017, 42, 748-756.	2.8	27

#	Article	IF	CITATIONS
19	Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Research, 2016, 1642, 336-343.	1.1	9
20	Synaptic mechanisms underlying persistent cocaine craving. Nature Reviews Neuroscience, 2016, 17, 351-365.	4.9	323
21	AMPA Receptor Plasticity in Accumbens Core Contributes to Incubation of Methamphetamine Craving. Biological Psychiatry, 2016, 80, 661-670.	0.7	72
22	Response of the Ubiquitin-Proteasome System to Memory Retrieval After Extended-Access Cocaine or Saline Self-Administration. Neuropsychopharmacology, 2015, 40, 3006-3014.	2.8	24
23	Multiple faces of BDNF in cocaine addiction. Behavioural Brain Research, 2015, 279, 240-254.	1.2	147
24	A Protein Synthesis-Dependent Mechanism Sustains Calcium-Permeable AMPA Receptor Transmission in Nucleus Accumbens Synapses during Withdrawal from Cocaine Self-Administration. Journal of Neuroscience, 2014, 34, 3095-3100.	1.7	53
25	Impact of neonatal NOS-1 inhibitor exposure on neurobehavioural measures and prefrontal-temporolimbic integration in the rat nucleus accumbens. International Journal of Neuropsychopharmacology, 2014, 17, 275-287.	1.0	7
26	Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nature Neuroscience, 2014, 17, 73-80.	7.1	129
27	AMPA receptor upregulation in the nucleus accumbens shell of cocaine-sensitized rats depends upon S-nitrosylation of stargazin. Neuropharmacology, 2014, 77, 28-38.	2.0	19
28	<scp>BDNF</scp> contributes to both rapid and homeostatic alterations in <scp>AMPA</scp> receptor surface expression in nucleus accumbens medium spiny neurons. European Journal of Neuroscience, 2014, 39, 1159-1169.	1.2	57
29	Bidirectional Modulation of Incubation of Cocaine Craving by Silent Synapse-Based Remodeling of Prefrontal Cortex to Accumbens Projections. Neuron, 2014, 83, 1453-1467.	3.8	284
30	Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology, 2014, 76, 287-300.	2.0	118
31	Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mCluR1 finds a niche. Current Opinion in Neurobiology, 2013, 23, 500-506.	2.0	40
32	Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nature Neuroscience, 2013, 16, 1644-1651.	7.1	256
33	An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neuroscience Letters, 2013, 557, 101-106.	1.0	8
34	Different Adaptations in AMPA Receptor Transmission in the Nucleus Accumbens after Short vs Long Access Cocaine Self-Administration Regimens. Neuropsychopharmacology, 2013, 38, 1789-1797.	2.8	66
35	Psychostimulant-Induced Neuroadaptations in Nucleus Accumbens AMPA Receptor Transmission. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012021-a012021.	2.9	72
36	Kalirin-7 Mediates Cocaine-Induced AMPA Receptor and Spine Plasticity, Enabling Incentive Sensitization. Journal of Neuroscience, 2013, 33, 11012-11022.	1.7	44

#	Article	IF	CITATIONS
37	Different Roles of BDNF in Nucleus Accumbens Core versus Shell during the Incubation of Cue-Induced Cocaine Craving and Its Long-Term Maintenance. Journal of Neuroscience, 2013, 33, 1130-1142.	1.7	72
38	Regulation of AMPA Receptor Trafficking in the Nucleus Accumbens by Dopamine and Cocaine. , 2013, , 257-273.		0
39	A Protein Crossâ€Linking Assay for Measuring Cell Surface Expression of Glutamate Receptor Subunits in the Rodent Brain After In Vivo Treatments. Current Protocols in Neuroscience, 2012, 59, Unit 5.30.1-19.	2.6	49
40	Withdrawal from Cocaine Self-Administration Alters NMDA Receptor-Mediated Ca2+ Entry in Nucleus Accumbens Dendritic Spines. PLoS ONE, 2012, 7, e40898.	1.1	17
41	Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why?. Frontiers in Molecular Neuroscience, 2012, 5, 72.	1.4	178
42	Behavioural effects of cocaine reversed. Nature, 2012, 481, 36-37.	13.7	4
43	Regulation of AMPA Receptor Trafficking in the Nucleus Accumbens by Dopamine and Cocaine. , 2012, , 223-239.		Ο
44	Distribution of AMPA receptor subunits and TARPs in synaptic and extrasynaptic membranes of the adult rat nucleus accumbens. Neuroscience Letters, 2011, 490, 180-184.	1.0	32
45	Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology, 2011, 61, 1141-1151.	2.0	99
46	Brainâ€derived neurotrophic factor rapidly increases AMPA receptor surface expression in rat nucleus accumbens. European Journal of Neuroscience, 2011, 34, 190-198.	1.2	44
47	Visualization of virus-infected brain regions using a GFP-illuminating flashlight enables accurate and rapid dissection for biochemical analysis. Journal of Neuroscience Methods, 2011, 201, 177-179.	1.3	11
48	Quantitative analysis of AMPA receptor subunit composition in addiction-related brain regions. Brain Research, 2011, 1367, 223-233.	1.1	83
49	Effects of acute cocaine or dopamine receptor agonists on AMPA receptor distribution in the rat nucleus accumbens. Synapse, 2011, 65, 54-63.	0.6	18
50	Group I mGluR Activation Reverses Cocaine-Induced Accumulation of Calcium-Permeable AMPA Receptors in Nucleus Accumbens Synapses via a Protein Kinase C-Dependent Mechanism. Journal of Neuroscience, 2011, 31, 14536-14541.	1.7	112
51	Calcium-Permeable AMPA Receptors Are Present in Nucleus Accumbens Synapses after Prolonged Withdrawal from Cocaine Self-Administration But Not Experimenter-Administered Cocaine. Journal of Neuroscience, 2011, 31, 5737-5743.	1.7	155
52	Regulation of AMPA Receptor Trafficking in the Nucleus Accumbens by Dopamine and Cocaine. Neurotoxicity Research, 2010, 18, 393-409.	1.3	61
53	AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neuroscience and Biobehavioral Reviews, 2010, 35, 185-211.	2.9	244
54	The Role of Glutamate Receptor Redistribution in Locomotor Sensitization to Cocaine. Neuropsychopharmacology, 2010, 35, 818-833.	2.8	80

#	Article	IF	CITATIONS
55	The Bermuda Triangle of cocaine-induced neuroadaptations. Trends in Neurosciences, 2010, 33, 391-398.	4.2	462
56	Plasticity of Lâ€ŧype Ca ²⁺ channels after cocaine withdrawal. Synapse, 2009, 63, 690-697.	0.6	43
57	Nucleus accumbens neurons exhibit synaptic scaling that is occluded by repeated dopamine preâ€exposure. European Journal of Neuroscience, 2009, 30, 539-550.	1.2	44
58	Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. Journal of Neurochemistry, 2009, 109, 35-51.	2.1	54
59	Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine. Journal of Neurochemistry, 2009, 110, 363-377.	2.1	80
60	Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature, 2008, 454, 118-121.	13.7	995
61	Dopamine receptors regulate NMDA receptor surface expression in prefrontal cortex neurons. Journal of Neurochemistry, 2008, 106, 2489-2501.	2.1	84
62	Acute and Chronic Dopamine Receptor Stimulation Modulates AMPA Receptor Trafficking in Nucleus Accumbens Neurons Cocultured with Prefrontal Cortex Neurons. Journal of Neuroscience, 2008, 28, 4216-4230.	1.7	103
63	Cell Surface AMPA Receptors in the Rat Nucleus Accumbens Increase during Cocaine Withdrawal But Internalize after Cocaine Challenge in Association with Altered Activation of Mitogen-Activated Protein Kinases. Journal of Neuroscience, 2007, 27, 10621-10635.	1.7	242
64	Dopamine Alters AMPA Receptor Synaptic Expression and Subunit Composition in Dopamine Neurons of the Ventral Tegmental Area Cultured with Prefrontal Cortex Neurons. Journal of Neuroscience, 2007, 27, 14275-14285.	1.7	54
65	Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. Journal of Neurochemistry, 2006, 98, 1664-1677.	2.1	120
66	Behavioral Sensitization to Cocaine Is Associated with Increased AMPA Receptor Surface Expression in the Nucleus Accumbens. Journal of Neuroscience, 2005, 25, 9144-9151.	1.7	443
67	Dopamine Receptor Stimulation Modulates AMPA Receptor Synaptic Insertion in Prefrontal Cortex Neurons. Journal of Neuroscience, 2005, 25, 7342-7351.	1.7	280
68	Stimulation of N-methyl-d-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons. European Journal of Neuroscience, 2004, 20, 649-657.	1.2	47
69	D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinaseÂA. Journal of Neurochemistry, 2004, 88, 1261-1271.	2.1	148
70	Psychomotor stimulants and neuronal plasticity. Neuropharmacology, 2004, 47, 61-79.	2.0	251
71	LTP May Trigger Addiction. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 248-252.	3.4	42

Effects of Psychomotor Stimulants on Glutamate Receptor Expression. , 2003, 79, 13-32.

12

#	Article	IF	CITATIONS
73	Psychomotor Stimulant Addiction: A Neural Systems Perspective. Journal of Neuroscience, 2002, 22, 3312-3320.	1.7	667
74	D1 dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures. Journal of Neurochemistry, 2002, 81, 984-992.	2.1	90
75	D1 dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons. Journal of Neurochemistry, 2002, 83, 704-712.	2.1	115
76	Addiction: Making the Connection Between Behavioral Changes and Neuronal Plasticity in Specific Pathways. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 146-157.	3.4	164
77	Amphetamine-Induced Plasticity of AMPA Receptors in the Ventral Tegmental Area: Effects on Extracellular Levels of Dopamine and Glutamate in Freely Moving Rats. Journal of Neuroscience, 2001, 21, 6362-6369.	1.7	83
78	Altered responsiveness of medial prefrontal cortex neurons to glutamate and dopamine after withdrawal from repeated amphetamine treatment. , 2000, 36, 342-344.		50
79	Withdrawal from repeated amphetamine administration reduces NMDAR1 expression in the rat substantia nigra, nucleus accumbens and medial prefrontal cortex. European Journal of Neuroscience, 1999, 11, 3167-3177.	1.2	43
80	Repeated amphetamine administration alters AMPA receptor subunit expression in rat nucleus accumbens and medial prefrontal cortex. , 1999, 32, 119-131.		90
81	Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations. Synapse, 1999, 34, 169-180.	0.6	170
82	The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progress in Neurobiology, 1998, 54, 679-720.	2.8	889
83	Repeated amphetamine administration alters the expression of mRNA for AMPA receptor subunits in rat nucleus accumbens and prefrontal cortex. Synapse, 1997, 26, 269-280.	0.6	131
84	Repeated administration of MK-801 produces sensitization to its own locomotor stimulant effects but blocks sensitization to amphetamine. Brain Research, 1991, 562, 164-168.	1.1	232