Xuli Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1978264/publications.pdf

Version: 2024-02-01

17	403	933447	888059
papers	citations	h-index	g-index
17	17	17	683
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual Modulated SiO Particles by Graphene Cord and Si/SiO ₂ Composite for Highâ€Performance Lithiumâ€ion Battery Anodes. Advanced Materials Interfaces, 2022, 9, .	3.7	17
2	SiO2-Based Lithium-Ion Battery Anode Materials: A Brief Review. Journal of Electronic Materials, 2022, 51, 3379-3390.	2.2	6
3	Recent Advancements in Selenium-Based Cathode Materials for Lithium Batteries: A Mini-Review. Electrochem, 2022, 3, 285-308.	3.3	9
4	Synergistic Lithium Storage in Silica–Tin Composites Enables a Cycle-Stable and High-Capacity Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 2741-2750.	5.1	18
5	Enhanced Electrochemical Performance Promoted by Tin in Silica Anode Materials for Stable and High-Capacity Lithium-lon Batteries. Materials, 2021, 14, 1071.	2.9	20
6	Enhanced electrochemical performance of silicon monoxide anode materials prompted by germanium. Materials Chemistry and Physics, 2021, 267, 124611.	4.0	12
7	Facile Synthesis of Carbon Nanospheres with High Capability to Inhale Selenium Powder for Electrochemical Energy Storage. Materials, 2021, 14, 6760.	2.9	2
8	Bilayer-graphene-coated Si nanoparticles as advanced anodes for high-rate lithium-ion batteries. Electrochimica Acta, 2020, 329, 134975.	5.2	34
9	Hollow bismuth ferrite combined graphene as advanced anode material for sodium-ion batteries. Progress in Natural Science: Materials International, 2020, 30, 153-159.	4.4	7
10	Layered Phosphorus-Rich Phosphide Composite as a Stable, High-Capacity Anode for Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 4309-4315.	5.1	11
11	Porous carbon adsorption layer enabling highly reversible redox-reaction of a high potential organic electrode material for sodium ion batteries. RSC Advances, 2018, 8, 24900-24905.	3.6	11
12	Advanced anodes composed of graphene encapsulated nano-silicon in a carbon nanotube network. RSC Advances, 2017, 7, 15694-15701.	3.6	31
13	Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes. Electrochimica Acta, 2017, 235, 150-157.	5.2	34
14	Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy, 2016, 27, 647-657.	16.0	61
15	Gamma titanium phosphate as an electrode material for Li-ion and Na-ion storage: performance and mechanism. Journal of Materials Chemistry A, 2016, 4, 18084-18090.	10.3	6
16	Polypyrrole-promoted superior cyclability and rate capability of Na _x Fe[Fe(CN) ₆] cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6036-6041.	10.3	100
17	Direct synthesis of graphene quantum dots on hexagonal boron nitride substrate. Journal of Materials Chemistry C, 2014, 2, 3717-3722.	5.5	24