M M Bello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1977690/publications.pdf Version: 2024-02-01

		623574	477173
29	1,513	14	29
papers	citations	h-index	g-index
31	31	31	2127
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Towards cleaner production in palm oil industry: Advanced treatment of biologically-treated POME using palm kernel shell-based adsorbent. Cleaner Engineering and Technology, 2021, 2, 100079.	2.1	6
2	Developing friendlier biodiesel production process via systematic inherent safety interventions. Journal of Cleaner Production, 2021, 308, 127291.	4.6	4
3	Dynamic Inherently Safer Modifications: Metric development and its validation for fire and explosion prevention. Journal of Loss Prevention in the Process Industries, 2021, 71, 104483.	1.7	0
4	Review on the Inherently Safer Design for chemical processes: Past, present and future. Journal of Cleaner Production, 2021, 305, 127154.	4.6	23
5	Inherent health oriented design for preventing sick building syndrome during planning stage. Journal of Building Engineering, 2021, 44, 103285.	1.6	4
6	Response surface methodology optimization of integrated fluidized bed adsorption–Fenton oxidation for removal of Reactive Black 5. Chemical Engineering Communications, 2020, 207, 1567-1578.	1.5	1
7	Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: Oxidation-adsorption synergy and surface interaction. Journal of Water Process Engineering, 2020, 33, 101001.	2.6	24
8	Paspalum notatum Grass-waste-based Adsorbent for Rhodamine B Removal from Polluted Water. Chemical and Biochemical Engineering Quarterly, 2020, 34, 93-104.	0.5	15
9	Magnetic graphene oxide-biomass activated carbon composite for dye removal. Korean Journal of Chemical Engineering, 2020, 37, 2179-2191.	1.2	20
10	Impacts of non-oxidative torrefaction conditions on the fuel properties of indigenous biomass (bagasse). Waste Management and Research, 2020, 38, 1284-1294.	2.2	9
11	Systematic review on the implementation methodologies of inherent safety in chemical process. Journal of Loss Prevention in the Process Industries, 2020, 65, 104092.	1.7	15
12	Systematic inherent safety and its implementation in chlorine liquefaction process. Journal of Loss Prevention in the Process Industries, 2020, 65, 104133.	1.7	5
13	Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism. Journal of Environmental Chemical Engineering, 2020, 8, 104055.	3.3	64
14	Enhancing the Anti-biofouling Properties of Polyethersulfone Membrane Using Chitosan-Powder Activated Carbon Composite. Journal of Polymers and the Environment, 2019, 27, 2156-2166.	2.4	6
15	Predicting the degradation potential of Acid blue 113 by different oxidants using quantum chemical analysis. Heliyon, 2019, 5, e02396.	1.4	23
16	Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. Journal of Environmental Management, 2019, 246, 547-556.	3.8	213
17	Interaction patterns in fluidized-bed Fenton process for the degradation of recalcitrant pollutants: theoretical and experimental insights. Chemical Papers, 2019, 73, 2591-2602.	1.0	7
18	Fenton oxidation treatment of recalcitrant dye in fluidized bed reactor: Role of SiO 2 as carrier and its interaction with fenton's reagent. Environmental Progress and Sustainable Energy, 2019, 38, 13188.	1.3	9

M M Bello

#	Article	IF	CITATIONS
19	A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Chemical Engineering Research and Design, 2019, 126, 119-140.	2.7	247
20	Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environmental Chemistry Letters, 2019, 17, 1125-1142.	8.3	60
21	Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution. Environmental Technology (United Kingdom), 2019, 40, 1508-1516.	1.2	30
22	A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 2018, 193, 1004-1017.	4.2	329
23	Adsorption and Oxidation Techniques to Remove Organic Pollutants from Water. Environmental Chemistry for A Sustainable World, 2018, , 249-300.	0.3	7
24	Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives. Journal of Environmental Management, 2017, 198, 170-182.	3.8	82
25	Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization. Journal of Environmental Management, 2017, 204, 75-81.	3.8	88
26	Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. Journal of Cleaner Production, 2017, 141, 1492-1514.	4.6	139
27	Performance of Fluidized bed Fenton process in Degrading Acid Blue 113. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012006.	0.3	5
28	Adsorption of arsenic from aqueous solution using magnetic graphene oxide. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012007.	0.3	6
29	POME is treated for removal of color from biologically treated POME in fixed bed column: Applying wavelet neural network (WNN). Journal of Hazardous Materials, 2013, 262, 106-113.	6.5	62