
Ivone Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/197719/publications.pdf Version: 2024-02-01

IVONE COMES

#	Article	IF	CITATIONS
1	Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. British Journal of Pharmacology, 2022, 179, 1544-1564.	5.4	35
2	GPR83 Engages Endogenous Peptides from Two Distinct Precursors to Elicit Differential Signaling. Molecular Pharmacology, 2022, 102, 29-38.	2.3	13
3	Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology, 2021, 183, 108406.	4.1	15
4	Regulation of Opioid Receptors by Their Endogenous Opioid Peptides. Cellular and Molecular Neurobiology, 2021, 41, 1103-1118.	3.3	12
5	High-throughput screening and validation of antibodies against synaptic proteins to explore opioid signaling dynamics. Communications Biology, 2021, 4, 238.	4.4	5
6	Compartment-specific opioid receptor signaling is selectively modulated by different dynorphin peptides. ELife, 2021, 10, .	6.0	17
7	Synthesis and Pharmacology of a Novel μ–δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. Journal of Medicinal Chemistry, 2020, 63, 13618-13637.	6.4	22
8	Autoantibodies Blocking <scp>M₃</scp> Muscarinic Receptors Cause Postganglionic Cholinergic Dysautonomia. Annals of Neurology, 2020, 88, 1237-1243.	5.3	8
9	Biased signaling by endogenous opioid peptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11820-11828.	7.1	78
10	Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Molecular Pharmacology, 2020, 98, 96-108.	2.3	85
11	Opioid-Induced Signaling and Antinociception Are Modulated by the Recently Deorphanized Receptor, GPR171. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 56-62.	2.5	11
12	Targeting Cannabinoid 1 and Delta Opioid Receptor Heteromers Alleviates Chemotherapy-Induced Neuropathic Pain. ACS Pharmacology and Translational Science, 2019, 2, 219-229.	4.9	32
13	Neuropeptide PEN and Its Receptor GPR83: Distribution, Signaling, and Regulation. ACS Chemical Neuroscience, 2019, 10, 1884-1891.	3.5	13
14	Regulation of an Opioid Receptor Chaperone Protein, RTP4, by Morphine. Molecular Pharmacology, 2019, 95, 11-19.	2.3	18
15	Identification of small molecule ligands targeting GPR83, a Gâ€protein coupled receptor activated by the abundant neuropeptide PEN. FASEB Journal, 2018, 32, 829.9.	0.5	0
16	The Neuropeptide Receptor System, BigLENâ€GPR171, Interacts with the Opioid System to Relieve Pain. FASEB Journal, 2018, 32, 684.12.	0.5	0
17	The BigLEN-GPR171 Peptide Receptor System Within the Basolateral Amygdala Regulates Anxiety-Like Behavior and Contextual Fear Conditioning. Neuropsychopharmacology, 2017, 42, 2527-2536.	5.4	23
18	A novel peptide that improves metabolic parameters without adverse central nervous system effects. Scientific Reports, 2017, 7, 14781.	3.3	19

Ivone Gomes

#	Article	IF	CITATIONS
19	Generation of G protein-coupled receptor antibodies differentially sensitive to conformational states. PLoS ONE, 2017, 12, e0187306.	2.5	10
20	Detection of Receptor Heteromerization Using In Situ Proximity Ligation Assay. Current Protocols in Pharmacology, 2016, 75, 2.16.1-2.16.31.	4.0	47
21	Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6041-6046.	7.1	29
22	Identification of a small-molecule ligand that activates the neuropeptide receptor GPR171 and increases food intake. Science Signaling, 2016, 9, ra55.	3.6	26
23	Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Science Signaling, 2016, 9, ra43.	3.6	66
24	G Protein–Coupled Receptor Heteromers. Annual Review of Pharmacology and Toxicology, 2016, 56, 403-425.	9.4	222
25	GPR171, a Newly Deorphanized Hypothalamic G Protein oupled Receptor is Involved in the Regulation of Rewardâ€Related Behaviors. FASEB Journal, 2015, 29, 1019.1.	0.5	0
26	Molecular characterization of eluxadoline as a potential ligand targeting mu-delta opioid receptor heteromers. Biochemical Pharmacology, 2014, 92, 448-456.	4.4	73
27	Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology, 2014, 86, 228-240.	4.1	69
28	Disease-Specific Heteromerization of G-Protein-Coupled Receptors That Target Drugs of Abuse. Progress in Molecular Biology and Translational Science, 2013, 117, 207-265.	1.7	28
29	Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12072-12077.	7.1	114
30	G-Protein-Coupled Heteromers. Methods in Enzymology, 2013, 521, 219-238.	1.0	12
31	GPR171 is a hypothalamic G protein-coupled receptor for BigLEN, a neuropeptide involved in feeding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16211-16216.	7.1	67
32	G Protein-Coupled Receptor Heteromerization: A Role in Allosteric Modulation of Ligand Binding. Molecular Pharmacology, 2011, 79, 1044-1052.	2.3	75
33	Hemoglobin-derived Peptides as Novel Type of Bioactive Signaling Molecules. AAPS Journal, 2010, 12, 658-669.	4.4	102
34	Increased Abundance of Opioid Receptor Heteromers After Chronic Morphine Administration. Science Signaling, 2010, 3, ra54.	3.6	191
35	Novel endogenous peptide agonists of cannabinoid receptors. FASEB Journal, 2009, 23, 3020-3029.	0.5	135
36	Post-activation-mediated Changes in Opioid Receptors Detected by N-terminal Antibodies. Journal of Biological Chemistry, 2008, 283, 10735-10744.	3.4	20

Ivone Gomes

#	Article	IF	CITATIONS
37	Conformation State-sensitive Antibodies to G-protein-coupled Receptors*. Journal of Biological Chemistry, 2007, 282, 5116-5124.	3.4	94
38	μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. British Journal of Pharmacology, 2006, 148, 387-395.	5.4	274
39	Mechanisms of action of antidepressants: from neurotransmitter systems to signaling pathways. Cellular Signalling, 2005, 17, 549-557.	3.6	124
40	Cannabinoid Receptor-induced Neurite Outgrowth Is Mediated by Rap1 Activation through Gαo/i-triggered Proteasomal Degradation of Rap1GAPII. Journal of Biological Chemistry, 2005, 280, 11413-11421.	3.4	118
41	Serotonin receptor activation leads to neurite outgrowth and neuronal survival. Molecular Brain Research, 2005, 138, 228-235.	2.3	118
42	A role for heterodimerization of μ and δopiate receptors in enhancing morphine analgesia. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5135-5139.	7.1	377
43	INTERACTIONS BETWEEN delta OPIOID RECEPTORS AND alpha2A-ADRENOCEPTORS. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 833-836.	1.9	37
44	Opioid Receptor Oligomerization: Detection and Functional Characterization of Interacting Receptors. , 2003, 84, 157-184.		36