Asim Aijaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1977005/publications.pdf

Version: 2024-02-01

		567281	794594
19	625	15	19
papers	citations	h-index	g-index
19	19	19	642
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A strategy for increased carbon ionization in magnetron sputtering discharges. Diamond and Related Materials, 2012, 23, 1-4.	3.9	97
2	Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides. Journal of Applied Physics, 2013 , 113 , .	2.5	86
3	Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide. Surface and Coatings Technology, 2011, 205, 4828-4831.	4.8	70
4	Low-temperature synthesis of thermochromic vanadium dioxide thin films by reactive high power impulse magnetron sputtering. Solar Energy Materials and Solar Cells, 2016, 149, 137-144.	6.2	70
5	Mechanical Properties of Hydrogen Free Diamond-Like Carbon Thin Films Deposited by High Power Impulse Magnetron Sputtering with Ne. Coatings, 2018, 8, 385.	2.6	31
6	Hard and dense diamond like carbon coatings deposited by deep oscillations magnetron sputtering. Surface and Coatings Technology, 2018, 336, 92-98.	4.8	29
7	Dual-magnetron open field sputtering system for sideways deposition of thin films. Surface and Coatings Technology, 2010, 204, 2165-2169.	4.8	27
8	Direct comparison of atomic layer deposition and sputtering of In2O3:H used as transparent conductive oxide layer in CuIn1â^'xGaxSe2 thin film solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 757-764.	6.2	25
9	A novel high-power pulse PECVD method. Surface and Coatings Technology, 2012, 206, 4562-4566.	4.8	24
10	Deposition of yttria-stabilized zirconia thin films by high power impulse magnetron sputtering and pulsed magnetron sputtering. Surface and Coatings Technology, 2014, 240, 1-6.	4.8	24
11	Effect of KF absorber treatment on the functionality of different transparent conductive oxide layers in CIGSe solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 13-23.	8.1	22
12	Using hydrogenâ€doped In ₂ O ₃ films as a transparent back contact in (Ag,Cu)(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2018, 26, 159-170.	8.1	19
13	Synthesis of hydrogenated diamondlike carbon thin films using neon–acetylene based high power impulse magnetron sputtering discharges. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, 061504.	2.1	18
14	Evolution of sputtering target surface composition in reactive high power impulse magnetron sputtering. Journal of Applied Physics, 2017, 121, .	2.5	17
15	Principles for designing sputtering-based strategies for high-rate synthesis of dense and hard hydrogenated amorphous carbon thin films. Diamond and Related Materials, 2014, 44, 117-122.	3.9	16
16	lon induced stress relaxation in dense sputter-deposited DLC thin films. Applied Physics Letters, 2017, 111, .	3.3	16
17	Discharge runaway in high power impulse magnetron sputtering of carbon: the effect of gas pressure, composition and target peak voltage. Journal Physics D: Applied Physics, 2018, 51, 165201.	2.8	12
18	High power impulse magnetron sputtering of diamond-like carbon coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	12

#	Article	IF	CITATIONS
19	Room Temperature Reactive Deposition of InGaZnO and ZnSnO Amorphous Oxide Semiconductors for Flexible Electronics. Coatings, 2020, 10, 2.	2.6	10