
Stavros Solomos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1976403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmospheric Chemistry and Physics, 2014, 14, 317-398.	4.9	271
2	Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmospheric Research, 2016, 176-177, 185-201.	4.1	127
3	An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmospheric Chemistry and Physics, 2011, 11, 873-892.	4.9	123
4	Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmospheric Chemistry and Physics, 2017, 17, 5893-5919.	4.9	117
5	Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmospheric Chemistry and Physics, 2018, 18, 1337-1362.	4.9	112
6	LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmospheric Chemistry and Physics, 2015, 15, 7127-7153.	4.9	94
7	Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements. Atmospheric Measurement Techniques, 2017, 10, 2435-2453.	3.1	89
8	Saharan dust levels in Greece and received inhalation doses. Atmospheric Chemistry and Physics, 2008, 8, 7181-7192.	4.9	86
9	Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region. Atmospheric Chemistry and Physics, 2016, 16, 13711-13724.	4.9	56
10	Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmospheric Chemistry and Physics, 2019, 19, 11315-11342.	4.9	53
11	Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in SeptemberA2015. Atmospheric Chemistry and Physics, 2017, 17, 4063-4079.	4.9	50
12	From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete. Atmosphere, 2018, 9, 240.	2.3	49
13	GARRLiC and LIRIC: strengths and limitations for the characterization of dust and marine particles along with their mixtures. Atmospheric Measurement Techniques, 2017, 10, 4995-5016.	3.1	42
14	Direct radiative effects during intense Mediterranean desert dust outbreaks. Atmospheric Chemistry and Physics, 2018, 18, 8757-8787.	4.9	41
15	Impact of natural aerosols on atmospheric radiation and consequent feedbacks with the meteorological and photochemical state of the atmosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1463-1491.	3.3	39
16	Density currents as a desert dust mobilization mechanism. Atmospheric Chemistry and Physics, 2012, 12, 11199-11211.	4.9	38
17	Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations $\hat{a} \in $ The FireHub platform. Atmospheric Environment, 2015, 119, 348-361.	4.1	29
18	Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas. Journal of Hydrometeorology, 2013, 14, 1844-1858.	1.9	23

STAVROS SOLOMOS

#	Article	IF	CITATIONS
19	Natural and anthropogenic aerosols in the Eastern Mediterranean and Middle East: Possible impacts. Science of the Total Environment, 2014, 488-489, 389-397.	8.0	19
20	Long-Term Ground-Based Measurements of Aerosol Optical Depth over Kuwait City. Remote Sensing, 2018, 10, 1807.	4.0	19
21	Evaluation of the BSC-DREAM8b regional dust model using the 3D LIVAS-CALIPSO product. Atmospheric Environment, 2018, 195, 46-62.	4.1	19
22	Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations. Atmospheric Chemistry and Physics, 2017, 17, 551-574.	4.9	18
23	Is the near-spherical shape the "new black―for smoke?. Atmospheric Chemistry and Physics, 2020, 20, 14005-14021.	4.9	16
24	Development of a dynamic dust source map for NMME-DREAM v1.0 model based on MODIS Normalized Difference Vegetation Index (NDVI) over the Arabian Peninsula. Geoscientific Model Development, 2019, 12, 979-988.	3.6	15
25	Greenhouse gases (CO2 and CH4) at an urban background site in Athens, Greece: Levels, sources and impact of atmospheric circulation. Atmospheric Environment, 2021, 253, 118372.	4.1	15
26	An EARLINET early warning system for atmospheric aerosol aviation hazards. Atmospheric Chemistry and Physics, 2020, 20, 10775-10789.	4.9	15
27	Moving toward Subkilometer Modeling Grid Spacings: Impacts on Atmospheric and Hydrological Simulations of Extreme Flash Flood–Inducing Storms. Journal of Hydrometeorology, 2017, 18, 209-226.	1.9	12
28	Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period. Atmosphere, 2021, 12, 318.	2.3	12
29	Investigation of Volcanic Emissions in the Mediterranean: "The Etna–Antikythera Connection― Atmosphere, 2021, 12, 40.	2.3	11
30	Validation of LIRIC aerosol concentration retrievals using airborne measurements during a biomass burning episode over Athens. Atmospheric Research, 2017, 183, 255-267.	4.1	10
31	CCN Activity, Variability and Influence on Droplet Formation during the HygrA-Cd Campaign in Athens. Atmosphere, 2017, 8, 108.	2.3	10
32	Assessing Sea-State Effects on Sea-Salt Aerosol Modeling in the Lower Atmosphere Using Lidar and In-Situ Measurements. Remote Sensing, 2021, 13, 614.	4.0	10
33	Ten-year operational dust forecasting – Recent model development and future plans. IOP Conference Series: Earth and Environmental Science, 2009, 7, 012012.	0.3	9
34	Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing. Atmospheric Measurement Techniques, 2017, 10, 83-107.	3.1	9
35	Cloud icing by mineral dust and impacts to aviation safety. Scientific Reports, 2021, 11, 6411.	3.3	9
36	Modeling and remote sensing of an indirect Pyro-Cb formation and biomass transport from Portugal wildfires towards Europe. Atmospheric Environment, 2019, 206, 303-315.	4.1	8

STAVROS SOLOMOS

#	Article	IF	CITATIONS
37	An overview from hygroscopic aerosols to cloud droplets: The HygrA-CD campaign in the Athens basin. Science of the Total Environment, 2017, 574, 216-233.	8.0	7
38	Lessons learned and questions raised during and post-COVID-19 anthropopause period in relation to the environment and climate. Environment, Development and Sustainability, 2021, 23, 10623-10645.	5.0	7
39	The Combined Effect of Ozone and Aerosols on Erythemal Irradiance in an Extremely Low Ozone Event during May 2020. Atmosphere, 2021, 12, 145.	2.3	7
40	The Potential of GRASP/GARRLiC Retrievals for Dust Aerosol Model Evaluation: Case Study during the PreTECT Campaign. Remote Sensing, 2021, 13, 873.	4.0	7
41	Effects of regional and local atmospheric dynamics on the aerosol and CCN load over Athens. Atmospheric Environment, 2019, 197, 53-65.	4.1	6
42	Comparison and complementary use of in situ and remote sensing aerosol measurements in the Athens Metropolitan Area. Atmospheric Environment, 2020, 228, 117439.	4.1	6
43	Wet Scavenging in Removing Chemical Compositions and Aerosols: A Case Study Over the Lake Urmia. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	6
44	Development of a Dust Source Map for WRF-Chem Model Based on MODIS NDVI. Atmosphere, 2022, 13, 868.	2.3	6
45	Some considerations related to flight in dusty conditions. Journal of Aerospace Operations, 2014, 3, 45-56.	0.1	5
46	Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus. EPJ Web of Conferences, 2018, 176, 08005.	0.3	5
47	The Role of Weather during the Greek–Persian "Naval Battle of Salamis―in 480 B.C Atmosphere, 2020, 11, 838.	2.3	5
48	Mechanisms of Climate Variability, Air Quality and Impacts of Atmospheric Constituents in the Mediterranean Region. Advances in Global Change Research, 2013, , 119-156.	1.6	3
49	Application of the Garrlic Algorithm for the Characterization of Dust and Marine Particles Utilizing the Lidar-Sunphotometer Synergy. EPJ Web of Conferences, 2016, 119, 23021.	0.3	2
50	Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere, 2022, 13, 867.	2.3	2
51	3D Structure of Saharan Dust Transport Towards Europe as Seen by CALIPSO. EPJ Web of Conferences, 2016, 119, 18007.	0.3	1
52	Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece. EPJ Web of Conferences, 2016, 119, 18003.	0.3	1
53	Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014): A Case Study of Long-Range Transport of Mixed Aerosols. EPJ Web of Conferences, 2016, 119, 23016.	0.3	1
54	A Modeling Study on the Downslope Wind of "Katevatos―in Greece and Implications for the Battle of Arachova in 1826. Atmosphere, 2021, 12, 993.	2.3	1

STAVROS SOLOMOS

#	Article	IF	CITATIONS
55	Synergistic Satellite and Modeling Methods for the Description of Biomass Smoke Dispersion Over Complex Terrain. The FireHub Platform. Springer Atmospheric Sciences, 2017, , 809-815.	0.3	1
56	Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO. EPJ Web of Conferences, 2016, 119, 04007.	0.3	0
57	Development of a Dust Assimilation System for NMM-DREAM Model Based on MSG-SEVIRI Satellite Observations. Springer Atmospheric Sciences, 2017, , 801-807.	0.3	Ο
58	Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements. EPJ Web of Conferences, 2018, 176, 05018.	0.3	0
59	Contribution of Aviation Emissions on the Air Pollution Levels of the Mediterranean Region with the Use of an Online Coupled, Fully Integrated Modeling System. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 327-332.	0.2	Ο
60	The Role of Aerosol Properties on Cloud Nucleation Processes. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 27-34.	0.2	0
61	Highly Hygroscopic Particulate in Cloud Environment. Springer Proceedings in Complexity, 2018, , 579-585.	0.3	0