Yves Jacob

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1976357/publications.pdf

Version: 2024-02-01

76196 79541 6,005 77 40 73 citations h-index g-index papers 86 86 86 11082 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A reference map of the human binary protein interactome. Nature, 2020, 580, 402-408.	13.7	724
2	Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders. Cell, 2015, 161, 647-660.	13.5	482
3	Hepatitis C virus infection protein network. Molecular Systems Biology, 2008, 4, 230.	3.2	340
4	A variant in the CD209 promoter is associated with severity of dengue disease. Nature Genetics, 2005, 37, 507-513.	9.4	267
5	Cytoplasmic Dynein LC8 Interacts with Lyssavirus Phosphoprotein. Journal of Virology, 2000, 74, 10217-10222.	1.5	205
6	Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. Journal of Experimental Medicine, 2008, 205, 35-42.	4.2	203
7	A SAP30 Complex Inhibits IFN- \hat{l}^2 Expression in Rift Valley Fever Virus Infected Cells. PLoS Pathogens, 2008, 4, e13.	2.1	184
8	Benchmarking a luciferase complementation assay for detecting protein complexes. Nature Methods, 2011, 8, 990-992.	9.0	141
9	Inhibition of Pyrimidine Biosynthesis Pathway Suppresses Viral Growth through Innate Immunity. PLoS Pathogens, 2013, 9, e1003678.	2.1	137
10	Identification and Targeting of an Interaction between a Tyrosine Motif within Hepatitis C Virus Core Protein and AP2M1 Essential for Viral Assembly. PLoS Pathogens, 2012, 8, e1002845.	2.1	131
11	Genetically encoded chloride indicator with improved sensitivity. Journal of Neuroscience Methods, 2008, 170, 67-76.	1.3	123
12	Speciesâ€specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Reports, 2013, 14, 534-544.	2.0	121
13	The EVER Proteins as a Natural Barrier against Papillomaviruses: a New Insight into the Pathogenesis of Human Papillomavirus Infections. Microbiology and Molecular Biology Reviews, 2009, 73, 348-370.	2.9	119
14	Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN- \hat{l} ±/ \hat{l} 2 signaling. Virology, 2007, 368, 351-362.	1.1	118
15	Inhibition of Chikungunya Virus Infection in Cultured Human Muscle Cells by Furin Inhibitors. Journal of Biological Chemistry, 2008, 283, 21899-21908.	1.6	114
16	Targeting of incoming retroviral Gag to the centrosome involves a direct interaction with the dynein light chain 8. Journal of Cell Science, 2003, 116, 3433-3442.	1.2	107
17	Pooledâ€matrix protein interaction screens using Barcode Fusion Genetics. Molecular Systems Biology, 2016, 12, 863.	3.2	102
18	Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component. Journal of Virology, 2012, 86, 3121-3134.	1.5	98

#	Article	IF	CITATIONS
19	HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication. Journal of Virology, 2012, 86, 9122-9133.	1.5	94
20	Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes and Development, 2014, 28, 1957-1975.	2.7	86
21	Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. Journal of General Virology, 2001, 82, 2691-2696.	1.3	81
22	Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS. Journal of Biological Chemistry, 2009, 284, 21797-21809.	1.6	81
23	Quantifying domain-ligand affinities and specificities by high-throughput holdup assay. Nature Methods, 2015, 12, 787-793.	9.0	80
24	DNA-based immunization for exploring the enlargement of immunological cross-reactivity against the lyssaviruses. Vaccine, 1998, 16, 417-425.	1.7	79
25	Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains. Journal of Virology, 2001, 75, 9613-9622.	1.5	76
26	Chimeric Lyssavirus Glycoproteins with Increased Immunological Potential. Journal of Virology, 1999, 73, 225-233.	1.5	75
27	Inhibition of IFN- $\hat{l}\pm\hat{l}^2$ signaling by two discrete peptides within measles virus V protein that specifically bind STAT1 and STAT2. Virology, 2009, 383, 112-120.	1.1	67
28	Microtubule-associated Proteins 1 (MAP1) Promote Human Immunodeficiency Virus Type I (HIV-1) Intracytoplasmic Routing to the Nucleus. Journal of Biological Chemistry, 2015, 290, 4631-4646.	1.6	65
29	Rabies virus matrix protein interplay with eIF3, new insights into rabies virus pathogenesis. Nucleic Acids Research, 2007, 35, 1522-1532.	6.5	62
30	Comparative analysis of virus–host interactomes with a mammalian high-throughput protein complementation assay based on Gaussia princeps luciferase. Methods, 2012, 58, 349-359.	1.9	59
31	Mapping the interactome of <scp>HPV</scp> E6 and E7 oncoproteins with the ubiquitinâ€proteasome system. FEBS Journal, 2017, 284, 3171-3201.	2.2	58
32	Maximizing binary interactome mapping with a minimal number of assays. Nature Communications, 2019, 10, 3907.	5.8	57
33	Large Scale Genotype Comparison of Human Papillomavirus E2-Host Interaction Networks Provides New Insights for E2 Molecular Functions. PLoS Pathogens, 2012, 8, e1002761.	2.1	56
34	Cloning and sequencing of a rat CuZn superoxide dismutase cDNA. Correlation between CuZn superoxide dismutase mRNA level and enzyme activity in rat and mouse tissues. FEBS Journal, 1987, 166, 181-187.	0.2	54
35	A Novel Expression Cassette of Lyssavirus Shows that the Distantly Related Mokola Virus Can Rescue a Defective Rabies Virus Genome. Journal of Virology, 2002, 76, 2024-2027.	1.5	53
36	Human Papillomavirus Type 5 E6 Oncoprotein Represses the Transforming Growth Factor Î ² Signaling Pathway by Binding to SMAD3. Journal of Virology, 2006, 80, 12420-12424.	1.5	53

#	Article	IF	CITATIONS
37	Peptides That Mimic the Amino-Terminal End of the Rabies Virus Phosphoprotein Have Antiviral Activity. Journal of Virology, 2009, 83, 10808-10820.	1.5	53
38	Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT) Machinery via Ubiquitination To Facilitate Viral Envelopment. MBio, 2016, 7, .	1.8	52
39	LGP2 binds to PACT to regulate RIG-l– and MDA5-mediated antiviral responses. Science Signaling, 2019, 12, .	1.6	51
40	A Comprehensive, Flexible Collection of SARS-CoV-2 Coding Regions. G3: Genes, Genomes, Genetics, 2020, 10, 3399-3402.	0.8	48
41	Amyloid Precursor-like Protein 2 and Sortilin Do Not Regulate the PCSK9 Convertase-mediated Low Density Lipoprotein Receptor Degradation but Interact with Each Other. Journal of Biological Chemistry, 2015, 290, 18609-18620.	1.6	47
42	Exploration of Binary Virus–Host Interactions Using an Infectious Protein Complementation Assay. Molecular and Cellular Proteomics, 2013, 12, 2845-2855.	2.5	46
43	Bioluminescence Profiling of NanoKAZ/NanoLuc Luciferase Using a Chemical Library of Coelenterazine Analogues. Chemistry - A European Journal, 2020, 26, 948-958.	1.7	46
44	Antiviral Drug Discovery Strategy Using Combinatorial Libraries of Structurally Constrained Peptides. Journal of Virology, 2004, 78, 7410-7417.	1.5	44
45	Recruitment of RED-SMU1 Complex by Influenza A Virus RNA Polymerase to Control Viral mRNA Splicing. PLoS Pathogens, 2014, 10, e1004164.	2.1	43
46	Gram-scale synthesis of luciferins derived from coelenterazine and original insights into their bioluminescence properties. Organic and Biomolecular Chemistry, 2019, 17, 3709-3713.	1.5	42
47	MARCH8ÂUbiquitinates the Hepatitis C Virus Nonstructural 2 Protein and Mediates Viral Envelopment. Cell Reports, 2019, 26, 1800-1814.e5.	2.9	42
48	Mitochondrial Dysfunction in Lyssavirus-Induced Apoptosis. Journal of Virology, 2008, 82, 4774-4784.	1.5	38
49	The potassium–chloride cotransporter 2 promotes cervical cancer cell migration and invasion by an ion transportâ€independent mechanism. Journal of Physiology, 2011, 589, 5349-5359.	1.3	36
50	Cottontail Rabbit Papillomavirus E8 Protein Is Essential for Wart Formation and Provides New Insights into Viral Pathogenesis. Journal of Virology, 2006, 80, 4890-4900.	1.5	35
51	Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a Highâ€Affinity Bivalent Ligand. Angewandte Chemie - International Edition, 2015, 54, 7958-7962.	7.2	32
52	Inhibition of the inflammatory response to stress by targeting interaction between PKR and its cellular activator PACT. Scientific Reports, 2017, 7, 16129.	1.6	28
53	The smaller helical repeat of poly(dA) . poly(dT) relative to DNA may reflect the wedge property of the dA . dT base pair. FEBS Journal, 1984 , 138 , $253-257$.	0.2	27
54	Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases. MBio, 2020, 11 , .	1.8	23

#	Article	IF	CITATIONS
55	The V Protein of Tioman Virus Is Incapable of Blocking Type I Interferon Signaling in Human Cells. PLoS ONE, 2013, 8, e53881.	1.1	21
56	TOX4 and NOVA1 Proteins Are Partners of the LEDGF PWWP Domain and Affect HIV-1 Replication. PLoS ONE, 2013, 8, e81217.	1.1	19
57	Monitoring of chloride and activity of glycine receptor channels using genetically encoded fluorescent sensors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3445-3462.	1.6	17
58	Differential Regulation of Type I Interferon and Epidermal Growth Factor Pathways by a Human Respirovirus Virulence Factor. PLoS Pathogens, 2009, 5, e1000587.	2.1	17
59	A Field-Proven Yeast Two-Hybrid Protocol Used to Identify Coronavirus–Host Protein–Protein Interactions. Methods in Molecular Biology, 2015, 1282, 213-229.	0.4	15
60	Lyssavirus glycoproteins expressing immunologically potent foreign B cell and cytotoxic T lymphocyte epitopes as prototypes for multivalent vaccines. Journal of General Virology, 1999, 80, 2343-2351.	1.3	14
61	Inhibition of Influenza Virus Replication by Constrained Peptides Targeting Nucleoprotein. Antiviral Chemistry and Chemotherapy, 2011, 22, 119-130.	0.3	13
62	Comparative Profiling of Ubiquitin Proteasome System Interplay with Influenza A Virus PB2 Polymerase Protein Recapitulating Virus Evolution in Humans. MSphere, 2017, 2, .	1.3	13
63	The SRC-family tyrosine kinase HCK shapes the landscape of SKAP2 interactome. Oncotarget, 2018, 9, 13102-13115.	0.8	11
64	Ubiquitination of $\langle i \rangle$ Listeria $\langle i \rangle$ Virulence Factor InIC Contributes to the Host Response to Infection. MBio, 2019, 10, .	1.8	11
65	Integrated version of reverse two-hybrid system for the postproteomic era. Methods in Enzymology, 2002, 350, 525-545.	0.4	10
66	Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS Discovery, 2019, 24, 25-37.	1.4	10
67	Destabilization of the human RED–SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10968-10977.	3.3	7
68	Coreâ€Modified Coelenterazine Luciferin Analogues: Synthesis and Chemiluminescence Properties. Chemistry - A European Journal, 2021, 27, 2112-2123.	1.7	7
69	Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication. Scientific Reports, 2021, 11, 3266.	1.6	7
70	Proteomic Analysis Uncovers Measles Virus Protein C Interaction With p65–iASPP Protein Complex. Molecular and Cellular Proteomics, 2021, 20, 100049.	2.5	6
71	Influenza A virus co-opts ERI1 exonuclease bound to histone mRNA to promote viral transcription. Nucleic Acids Research, 2020, 48, 10428-10440.	6.5	5
72	A Comparative Approach to Characterize the Landscape of Host-Pathogen Protein-Protein Interactions. Journal of Visualized Experiments, 2013, , e50404.	0.2	2

YVES JACOB

#	Article	IF	CITATIONS
73	Targeting the Two Oncogenic Functional Sites of the HPV E6 Oncoprotein with a Highâ€Affinity Bivalent Ligand. Angewandte Chemie, 2015, 127, 8069-8073.	1.6	2
74	Measuring the subcellular compartmentalization of viral infections by protein complementation assay. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	2
75	The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection. Journal of Biological Chemistry, 2022, 298, 101956.	1.6	2
76	Screening of Interactions with the ESCRT Machinery by a Gaussia princeps Split Luciferase-Based Complementation Assay. Methods in Molecular Biology, 2019, 1998, 291-304.	0.4	0
77	Regulation of cellular zinc balance as a potential mechanism of EVER-mediated protection against pathogenesis by cutaneous oncogenic human papillomaviruses. Journal of Cell Biology, 2007, 179, i21-i21.	2.3	0