
John M Mariadason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1975666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VEGF-A, VEGFR1 and VEGFR2 single nucleotide polymorphisms and outcomes from the AGITG MAX trial of capecitabine, bevacizumab and mitomycin C in metastatic colorectal cancer. Scientific Reports, 2022, 12, 1238.	1.6	7
2	Dual targeting of FGFR3 and ERBB3 enhances the efficacy of FGFR inhibitors in FGFR3 fusion-driven bladder cancer. BMC Cancer, 2022, 22, 478.	1.1	8
3	Epithelial de-differentiation triggered by co-ordinate epigenetic inactivation of the EHF and CDX1 transcription factors drives colorectal cancer progression. Cell Death and Differentiation, 2022, 29, 2288-2302.	5.0	6
4	Rapid Resistance of FGFR-driven Gastric Cancers to Regorafenib and Targeted FGFR Inhibitors can be Overcome by Parallel Inhibition of MEK. Molecular Cancer Therapeutics, 2021, 20, 704-715.	1.9	10
5	CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene, 2021, 40, 3015-3029.	2.6	13
6	Identification of ZBTB18 as a novel colorectal tumor suppressor gene through genome-wide promoter hypermethylation analysis. Clinical Epigenetics, 2021, 13, 88.	1.8	5
7	A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discovery, 2021, 7, 122.	2.0	23
8	EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses <i>Apc</i> -initiated colonic tumorigenesis. Development (Cambridge), 2021, 148, .	1.2	8
9	Overexpression of TP53 protein is associated with the lack of adjuvant chemotherapy benefit in patients with stage III colorectal cancer. Modern Pathology, 2020, 33, 483-495.	2.9	9
10	BCL-XL is an actionable target for treatment of malignant pleural mesothelioma. Cell Death Discovery, 2020, 6, 114.	2.0	13
11	Molecular regulators of lipid metabolism in the intestine – Underestimated therapeutic targets for obesity?. Biochemical Pharmacology, 2020, 178, 114091.	2.0	6
12	Prostate cancer cellâ€intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 2020, 21, e50162.	2.0	58
13	Genomic Profiling of Biliary Tract Cancer Cell Lines Reveals Molecular Subtypes and Actionable Drug Targets. IScience, 2019, 21, 624-637.	1.9	15
14	BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death and Disease, 2019, 10, 342.	2.7	125
15	Deletion of intestinal Hdac3 remodels the lipidome of enterocytes and protects mice from diet-induced obesity. Nature Communications, 2019, 10, 5291.	5.8	37
16	Excision repair cross-complementing group-1 (ERCC1) induction kinetics and polymorphism are markers of inferior outcome in patients with colorectal cancer treated with oxaliplatin. Oncotarget, 2019, 10, 5510-5522.	0.8	13
17	Interleukin 33 Signaling Restrains Sporadic Colon Cancer in an Interferon-γ–Dependent Manner. Cancer Immunology Research, 2018, 6, 409-421.	1.6	31
18	DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis. Scientific Reports, 2018, 8, 1767.	1.6	11

John M Mariadason

#	Article	IF	CITATIONS
19	Phase II study of everolimus (RAD001) monotherapy as first-line treatment in advanced biliary tract cancer with biomarker exploration: the RADiChol Study. British Journal of Cancer, 2018, 118, 966-971.	2.9	35
20	Cell Line Models of Molecular Subtypes of Colorectal Cancer. Methods in Molecular Biology, 2018, 1765, 3-26.	0.4	6
21	Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics, 2018, 10, 283.	2.0	44
22	The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: molecular analysis of the AGITG MAX clinical trial. Annals of Oncology, 2018, 29, 2240-2246.	0.6	113
23	ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules, 2018, 23, 2191.	1.7	79
24	Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. British Journal of Cancer, 2018, 118, 106-116.	2.9	24
25	Loss of the EPH receptor B6 contributes to colorectal cancer metastasis. Scientific Reports, 2017, 7, 43702.	1.6	25
26	Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity. Gastroenterology, 2017, 153, 1082-1095.	0.6	55
27	Kâ€Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines. Molecular Oncology, 2017, 11, 1130-1142.	2.1	15
28	ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clinical Cancer Research, 2017, 23, 5573-5584.	3.2	46
29	Aberrant DNA Methylation in Colorectal Cancer: What Should We Target?. Trends in Cancer, 2017, 3, 698-712.	3.8	85
30	PLX8394, a new generation BRAF inhibitor, selectively inhibits BRAF in colonic adenocarcinoma cells and prevents paradoxical MAPK pathway activation. Molecular Cancer, 2017, 16, 112.	7.9	44
31	Promoter hypomethylation of NY-ESO-1, association with clinicopathological features and PD-L1 expression in non-small cell lung cancer. Oncotarget, 2017, 8, 74036-74048.	0.8	13
32	By moonlighting in the nucleus, villin regulates epithelial plasticity. Molecular Biology of the Cell, 2016, 27, 535-548.	0.9	20
33	Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells. Molecular Cancer Therapeutics, 2016, 15, 1217-1226.	1.9	71
34	Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Research, 2016, 44, D969-D974.	6.5	55
35	FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 2015, 15, 2597-2601.	1.3	1,145
36	Implications of Epithelialââ,¬â€œMesenchymal Plasticity for Heterogeneity in Colorectal Cancer. Frontiers in Oncology, 2015, 5, 13.	1.3	27

John M Mariadason

#	Article	IF	CITATIONS
37	PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity. Oncogene, 2015, 34, 1333-1339.	2.6	21
38	Vascular endothelial growth factor D expression is a potential biomarker of bevacizumab benefit in colorectal cancer. British Journal of Cancer, 2015, 113, 37-45.	2.9	54
39	Highly Expressed Genes in Rapidly Proliferating Tumor Cells as New Targets for Colorectal Cancer Treatment. Clinical Cancer Research, 2015, 21, 3695-3704.	3.2	25
40	Telomere length is a novel predictive biomarker of sensitivity to anti-EGFR therapy in metastatic colorectal cancer. British Journal of Cancer, 2015, 112, 313-318.	2.9	22
41	Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxidants and Redox Signaling, 2015, 23, 66-84.	2.5	58
42	Anti-EGFR therapeutic efficacy correlates directly with inhibition of STAT3 activity. Cancer Biology and Therapy, 2014, 15, 623-632.	1.5	27
43	RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nature Communications, 2014, 5, 5458.	5.8	95
44	<i>ROS1</i> and <i>ALK</i> Fusions in Colorectal Cancer, with Evidence of Intratumoral Heterogeneity for Molecular Drivers. Molecular Cancer Research, 2014, 12, 111-118.	1.5	104
45	The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner. Journal of Biological Chemistry, 2014, 289, 25306-25316.	1.6	53
46	Colorectal Cancer Cell Lines Are Representative Models of the Main Molecular Subtypes of Primary Cancer. Cancer Research, 2014, 74, 3238-3247.	0.4	317
47	Phase II study of everolimus monotherapy as first-line treatment in advanced biliary tract cancer: RADichol Journal of Clinical Oncology, 2014, 32, 4101-4101.	0.8	9
48	Widespread FRA1-Dependent Control of Mesenchymal Transdifferentiation Programs in Colorectal Cancer Cells. PLoS ONE, 2014, 9, e88950.	1.1	69
49	FOXP3 over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis Oncotarget, 2014, 5, 264-276.	0.8	38
50	Oncolytic reovirus preferentially induces apoptosis in <i>KRAS</i> mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget, 2014, 5, 2807-2819.	0.8	43
51	Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy. Oncotarget, 2014, 5, 9199-9213.	0.8	31
52	BRAF Inhibitor–Driven Tumor Proliferation in a <i>KRAS</i> -Mutated Colon Carcinoma Is Not Overcome by MEK1/2 Inhibition. Journal of Clinical Oncology, 2013, 31, e448-e451.	0.8	51
53	Resistance to BRAF Inhibition in BRAF-Mutant Colon Cancer Can Be Overcome with PI3K Inhibition or Demethylating Agents. Clinical Cancer Research, 2013, 19, 657-667.	3.2	250
54	<i>SMAD2</i> , <i>SMAD3</i> and <i>SMAD4</i> Mutations in Colorectal Cancer. Cancer Research, 2013, 73, 725-735.	0.4	260

#	Article	IF	CITATIONS
55	Brush border myosin la inactivation in gastric but not endometrial tumors. International Journal of Cancer, 2013, 132, 1790-1799.	2.3	21
56	Global protein profiling reveals anti-EGFR monoclonal antibody 806-modulated proteins in A431 tumor xenografts. Growth Factors, 2013, 31, 154-164.	0.5	3
57	Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics <i>In Vivo</i> by Humanized Monoclonal Antibody CS-1008. Clinical Cancer Research, 2013, 19, 5984-5993.	3.2	15
58	Brush border Myosin Ia has tumor suppressor activity in the intestine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1530-1535.	3.3	60
59	<i>FOXP3</i> is not mutated in human melanoma. Pigment Cell and Melanoma Research, 2012, 25, 398-400.	1.5	5
60	β-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut, 2012, 61, 1306-1314.	6.1	54
61	A 19S proteasomal subunit cooperates with an ERK MAPK-regulated degron to regulate accumulation of Fra-1 in tumour cells. Oncogene, 2012, 31, 1817-1824.	2.6	27
62	Dual Targeting of the Epidermal Growth Factor Receptor Using the Combination of Cetuximab and Erlotinib: Preclinical Evaluation and Results of the Phase II DUX Study in Chemotherapy-Refractory, Advanced Colorectal Cancer. Journal of Clinical Oncology, 2012, 30, 1505-1512.	0.8	95
63	Villin Expression Is Frequently Lost in Poorly Differentiated Colon Cancer. American Journal of Pathology, 2012, 180, 1509-1521.	1.9	28
64	PTEN Gene Expression and Mutations in the PIK3CA Gene as Predictors of Clinical Benefit to Anti-Epidermal Growth Factor Receptor Antibody Therapy in Patients With KRAS Wild-Type Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2012, 11, 143-150.	1.0	87
65	Phase II trial of the histone deacetylase inhibitor romidepsin in patients with recurrent/metastatic head and neck cancer. Oral Oncology, 2012, 48, 1281-1288.	0.8	71
66	Therapeutic Targeting of the Epidermal Growth Factor Receptor in Human Cancer. Critical Reviews in Oncogenesis, 2012, 17, 31-50.	0.2	59
67	Rapid screening of SNPs in metastatic colorectal cancer (mCRC) utilizing multiplex sequencing technology (Sequenom) Journal of Clinical Oncology, 2012, 30, 418-418.	0.8	Ο
68	Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10272-10277.	3.3	52
69	Intestinal epithelial-specific PTEN inactivation results in tumor formation. American Journal of Physiology - Renal Physiology, 2011, 301, G856-G864.	1.6	29
70	Gene expression profiling of primary and metastatic colon cancers identifies a reduced proliferative rate in metastatic tumors. Clinical and Experimental Metastasis, 2010, 27, 1-9.	1.7	23
71	Intravenous administration of Reolysin®, a live replication competent RNA virus is safe in patients with advanced solid tumors. Investigational New Drugs, 2010, 28, 641-649.	1.2	123
72	Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. Oncogene, 2010, 29, 992-1002.	2.6	42

#	Article	IF	CITATIONS
73	Apoptotic Sensitivity of Colon Cancer Cells to Histone Deacetylase Inhibitors Is Mediated by an Sp1/Sp3-Activated Transcriptional Program Involving Immediate-Early Gene Induction. Cancer Research, 2010, 70, 609-620.	0.4	98
74	Aprataxin Tumor Levels Predict Response of Colorectal Cancer Patients to Irinotecan-based Treatment. Clinical Cancer Research, 2010, 16, 2375-2382.	3.2	35
75	Altered Dynamics of Intestinal Cell Maturation in <i>Apc1638N/+</i> Mice. Cancer Research, 2010, 70, 5348-5357.	0.4	11
76	Genomic and Biological Characterization of Exon 4 KRAS Mutations in Human Cancer. Cancer Research, 2010, 70, 5901-5911.	0.4	245
77	Prediction and Testing of Biological Networks Underlying Intestinal Cancer. PLoS ONE, 2010, 5, e12497.	1.1	11
78	Oxaliplatin resistance induced by ERCC1 up-regulation is abrogated by siRNA-mediated gene silencing in human colorectal cancer cells. Anticancer Research, 2010, 30, 2531-8.	0.5	20
79	The Receptor Tyrosine Kinase EPHB4 Has Tumor Suppressor Activities in Intestinal Tumorigenesis. Cancer Research, 2009, 69, 7430-7438.	0.4	58
80	An A13 Repeat within the 3′-Untranslated Region of Epidermal Growth Factor Receptor (EGFR) Is Frequently Mutated in Microsatellite Instability Colon Cancers and Is Associated with Increased EGFR Expression. Cancer Research, 2009, 69, 7811-7818.	0.4	34
81	Expression of seleniumâ€binding protein 1 characterizes intestinal cell maturation and predicts survival for patients with colorectal cancer. Molecular Nutrition and Food Research, 2008, 52, 1289-1299.	1.5	75
82	Proteomic changes during intestinal cell maturation in vivo. Journal of Proteomics, 2008, 71, 530-546.	1.2	53
83	Making Sense of HDAC2 Mutations in Colon Cancer. Gastroenterology, 2008, 135, 1457-1459.	0.6	10
84	Dissecting HDAC3-mediated tumor progression. Cancer Biology and Therapy, 2008, 7, 1581-1583.	1.5	12
85	HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008, 3, 28-37.	1.3	192
86	PIK3CA Mutation/PTEN Expression Status Predicts Response of Colon Cancer Cells to the Epidermal Growth Factor Receptor Inhibitor Cetuximab. Cancer Research, 2008, 68, 1953-1961.	0.4	435
87	HDAC4 Promotes Growth of Colon Cancer Cells via Repression of p21. Molecular Biology of the Cell, 2008, 19, 4062-4075.	0.9	188
88	ARC (apoptosis repressor with caspase recruitment domain) is a novel marker of human colon cancer. Cell Cycle, 2008, 7, 1640-1647.	1.3	50
89	Meta-Analysis of Microarray Studies Reveals a Novel Hematopoietic Progenitor Cell Signature and Demonstrates Feasibility of Inter-Platform Data Integration. PLoS ONE, 2008, 3, e2965.	1.1	20
90	Drug-induced inactivation or gene silencing of class I histone deacetylases suppresses ovarian cancer cell growth: Implications for therapy. Cancer Biology and Therapy, 2007, 6, 795-801.	1.5	93

JOHN M MARIADASON

#	Article	IF	CITATIONS
91	c-Jun NH2-Terminal Kinase 1 Plays a Critical Role in Intestinal Homeostasis and Tumor Suppression. American Journal of Pathology, 2007, 171, 297-303.	1.9	89
92	p27kip1 Regulates cdk2 Activity in the Proliferating Zone of the Mouse Intestinal Epithelium: Potential Role in Neoplasia. Gastroenterology, 2007, 133, 232-243.	0.6	16
93	Regulation of Enterocyte Apoptosis by Acyl-CoA Synthetase 5 Splicing. Gastroenterology, 2007, 133, 587-598.	0.6	47
94	Kaiso-Deficient Mice Show Resistance to Intestinal Cancer. Molecular and Cellular Biology, 2006, 26, 199-208.	1.1	146
95	Interaction of Genetic and Dietary Factors in Mouse Intestinal Tumorigenesis. Journal of Nutrition, 2006, 136, 2695S-2696S.	1.3	3
96	Histone Deacetylase 3 (HDAC3) and Other Class I HDACs Regulate Colon Cell Maturation and p21 Expression and Are Deregulated in Human Colon Cancer. Journal of Biological Chemistry, 2006, 281, 13548-13558.	1.6	486
97	EPHB4 and Survival of Colorectal Cancer Patients. Cancer Research, 2006, 66, 8943-8948.	0.4	80
98	Genetics and Epigenetics in Cancer Biology. , 2006, , 25-56.		1
99	Na+/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: Molecular characterization of SMCT. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7270-7275.	3.3	98
100	Meta-Transcriptome of Bone Marrow Stem Cells Demonstrates Platform and Lab Dependant Variability in Gene Expression and Reveals a Novel Set of Enriched Genes Blood, 2006, 108, 4189-4189.	0.6	0
101	Dietary Components Modify Gene Expression: Implications for Carcinogenesis. Journal of Nutrition, 2005, 135, 2710-2714.	1.3	28
102	Mechanisms of Inactivation of the Receptor Tyrosine Kinase EPHB2 in Colorectal Tumors. Cancer Research, 2005, 65, 10170-10173.	0.4	84
103	Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages. Experimental Cell Research, 2005, 304, 28-39.	1.2	16
104	Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology, 2005, 128, 1081-1088.	0.6	171
105	Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. British Journal of Cancer, 2004, 91, 1931-1946.	2.9	212
106	Customizing chemotherapy for colon cancer: the potential of gene expression profiling. Drug Resistance Updates, 2004, 7, 209-218.	6.5	15
107	Repression of MUC2 gene expression by butyrate, a physiological regulator of intestinal cell maturation. Oncogene, 2003, 22, 4983-4992.	2.6	59
108	Oncogenic Ki-Ras Inhibits the Expression of Interferon-responsive Genes through Inhibition of STAT1 and STAT2 Expression. Journal of Biological Chemistry, 2003, 278, 46278-46287.	1.6	61

JOHN M MARIADASON

#	Article	IF	CITATIONS
109	c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. British Journal of Cancer, 2003, 89, 1757-1765.	2.9	71
110	Application of Gene Expression Profiling to Colon Cell Maturation, Transformation and Chemoprevention. Journal of Nutrition, 2003, 133, 2410S-2416S.	1.3	14
111	TR3/Nur77 in colon cancer cell apoptosis. Cancer Research, 2003, 63, 5401-7.	0.4	89
112	Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Research, 2003, 63, 8791-812.	0.4	154
113	A gene expression profile that defines colon cell maturation in vitro. Cancer Research, 2002, 62, 4791-804.	0.4	93
114	Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology, 2001, 120, 889-899.	0.6	108
115	Short-chain fatty acids reduce expression of specific protein kinase C isoforms in human colonic epithelial cells. , 2000, 182, 222-231.		17
116	Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells during spontaneous and butyrate-induced differentiation. Journal of Cellular Physiology, 2000, 183, 347-354.	2.0	87
117	Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis, 1999, 20, 539-544.	1.3	78
118	Effect of butyrate on paracellular permeability in rat distal colonic mucosaex vivo. Journal of Gastroenterology and Hepatology (Australia), 1999, 14, 873-879.	1.4	48
119	Relationship of hydrolase activities to epithelial cell turnover in distal colonic mucosa of normal rats. Journal of Gastroenterology and Hepatology (Australia), 1999, 14, 866-872.	1.4	11
120	Cellular Mechanisms of Risk and Transformation. Annals of the New York Academy of Sciences, 1999, 889, 20-31.	1.8	11
121	Protective Role of the Epithelium of the Small Intestine and Colon. Inflammatory Bowel Diseases, 1996, 2, 279-302.	0.9	28
122	Protective role of the epithelium of the small intestine and colon. Inflammatory Bowel Diseases, 1996, 2, 279-302.	0.9	25