Mark M Churchland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1975610/publications.pdf

Version: 2024-02-01

44 papers 8,618 citations

34 h-index 265206 42 g-index

58 all docs 58 docs citations

58 times ranked 4951 citing authors

#	Article	IF	CITATIONS
1	Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces. Journal of Neuroscience, 2022, 42, 220-239.	3.6	10
2	Independent generation of sequence elements by motor cortex. Nature Neuroscience, 2021, 24, 412-424.	14.8	59
3	Neural Trajectories in the Supplementary Motor Area and Motor Cortex Exhibit Distinct Geometries, Compatible with Different Classes of Computation. Neuron, 2020, 107, 745-758.e6.	8.1	90
4	Postural control of arm and fingers through integration of movement commands. ELife, 2020, 9, .	6.0	34
5	Perturbation of Macaque Supplementary Motor Area Produces Context-Independent Changes in the Probability of Movement Initiation. Journal of Neuroscience, 2019, 39, 3217-3233.	3.6	13
6	Motor cortex signals for each arm are mixed across hemispheres and neurons yet partitioned within the population response. ELife, 2019, 8, .	6.0	88
7	Motor Cortex Embeds Muscle-like Commands in an Untangled Population Response. Neuron, 2018, 97, 953-966.e8.	8.1	216
8	Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. ELife, 2018, 7, .	6.0	80
9	Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex. Neuron, 2017, 95, 683-696.e11.	8.1	123
10	Reorganization between preparatory and movement population responses in motor cortex. Nature Communications, 2016, 7, 13239.	12.8	273
11	Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1. PLoS Computational Biology, 2016, 12, e1005164.	3.2	46
12	The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type. ENeuro, 2016, 3, ENEURO.0085-16.2016.	1.9	173
13	Using the precision of the primate to study the origins of movement variability. Neuroscience, 2015, 296, 92-100.	2.3	10
14	A neural network that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience, 2015, 18, 1025-1033.	14.8	426
15	Editorial overview: Motor circuits and action. Current Opinion in Neurobiology, 2015, 33, v-vi.	4.2	O
16	Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nature Communications, 2015, 6, 7759.	12.8	148
17	Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex. ELife, 2015, 4, e04677.	6.0	90
18	Cortical activity in the null space: permitting preparation without movement. Nature Neuroscience, 2014, 17, 440-448.	14.8	582

#	Article	IF	Citations
19	A Dynamical Basis Set for Generating Reaches. Cold Spring Harbor Symposia on Quantitative Biology, 2014, 79, 67-80.	1.1	26
20	The roles of monkey M1 neuron classes in movement preparation and execution. Journal of Neurophysiology, 2013, 110, 817-825.	1.8	76
21	Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuroscience, 2013, 36, 337-359.	10.7	633
22	DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity. Journal of Neural Engineering, 2013, 10, 066012.	3.5	39
23	A high-performance neural prosthesis enabled by control algorithm design. Nature Neuroscience, 2012, 15, 1752-1757.	14.8	454
24	Two layers of neural variability. Nature Neuroscience, 2012, 15, 1472-1474.	14.8	48
25	Neural population dynamics during reaching. Nature, 2012, 487, 51-56.	27.8	1,195
26	A dynamical systems view of motor preparation. Progress in Brain Research, 2011, 192, 33-58.	1.4	62
27	Roles of Monkey Premotor Neuron Classes in Movement Preparation and Execution. Journal of Neurophysiology, 2010, 104, 799-810.	1.8	122
28	Cortical Preparatory Activity: Representation ofÂMovement or First Cog in a Dynamical Machine?. Neuron, 2010, 68, 387-400.	8.1	406
29	Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature Neuroscience, 2010, 13, 369-378.	14.8	907
30	Single-Neuron Stability during Repeated Reaching in Macaque Premotor Cortex. Journal of Neuroscience, 2007, 27, 10742-10750.	3.6	145
31	Temporal Complexity and Heterogeneity of Single-Neuron Activity in Premotor and Motor Cortex. Journal of Neurophysiology, 2007, 97, 4235-4257.	1.8	281
32	Delay of Movement Caused by Disruption of Cortical Preparatory Activity. Journal of Neurophysiology, 2007, 97, 348-359.	1.8	132
33	Techniques for extracting single-trial activity patterns from large-scale neural recordings. Current Opinion in Neurobiology, 2007, 17, 609-618.	4.2	141
34	A Central Source of Movement Variability. Neuron, 2006, 52, 1085-1096.	8.1	338
35	Preparatory Activity in Premotor and Motor Cortex Reflects the Speed of the Upcoming Reach. Journal of Neurophysiology, 2006, 96, 3130-3146.	1.8	239
36	Neural Variability in Premotor Cortex Provides a Signature of Motor Preparation. Journal of Neuroscience, 2006, 26, 3697-3712.	3.6	369

#	Article	IF	CITATIONS
37	Comparison of the Spatial Limits on Direction Selectivity in Visual Areas MT and V1. Journal of Neurophysiology, 2005, 93, 1235-1245.	1.8	40
38	Evidence for Object Permanence in the Smooth-Pursuit Eye Movements of Monkeys. Journal of Neurophysiology, 2003, 90, 2205-2218.	1.8	78
39	Constraints on the Source of Short-Term Motion Adaptation in Macaque Area MT. I. The Role of Input and Intrinsic Mechanisms. Journal of Neurophysiology, 2002, 88, 354-369.	1.8	142
40	Shifts in the Population Response in the Middle Temporal Visual Area Parallel Perceptual and Motor Illusions Produced by Apparent Motion. Journal of Neuroscience, 2001, 21, 9387-9402.	3.6	77
41	Experimental and Computational Analysis of Monkey Smooth Pursuit Eye Movements. Journal of Neurophysiology, 2001, 86, 741-759.	1.8	49
42	Reconstruction of Target Speed for the Guidance of Pursuit Eye Movements. Journal of Neuroscience, 2001, 21, 3196-3206.	3.6	40
43	Apparent Motion Produces Multiple Deficits in Visually Guided Smooth Pursuit Eye Movements of Monkeys. Journal of Neurophysiology, 2000, 84, 216-235.	1.8	38
44	Motor cortex activity across movement speeds is predicted by network-level strategies for generating muscle activity. ELife, $0,11,.$	6.0	27