List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1975407/publications.pdf Version: 2024-02-01

LOSEDH KEDDIE

#	Article	IF	CITATIONS
1	Pickering emulsions stabilized by carboxylated nanodiamonds over a broad pH range. Journal of Colloid and Interface Science, 2022, 608, 2025-2038.	5.0	15
2	Effects of environmental conditions on the micro-mechanical properties of formulated waterborne coatings. Progress in Organic Coatings, 2022, 163, 106657.	1.9	3
3	Suppression of self-stratification in colloidal mixtures with high Péclet numbers. Soft Matter, 2022, 18, 2512-2516.	1.2	9
4	Quantitative imaging and modeling of colloidal gelation in the coagulant dipping process. Journal of Chemical Physics, 2022, 156, .	1.2	3
5	Azide Photochemistry in Acrylic Copolymers for Ultraviolet Cross-Linkable Pressure-Sensitive Adhesives: Optimization, Debonding-on-Demand, and Chemical Modification. ACS Applied Materials & Interfaces, 2022, 14, 30216-30227.	4.0	8
6	Determination of parameters for self-stratification in bimodal colloidal coatings using Raman depth profiling. Progress in Organic Coatings, 2021, 157, 106272.	1.9	14
7	Sphere-to-worm morphological transitions and size changes through thiol– <i>para</i> -fluoro core modification of PISA-made nano-objects. Polymer Chemistry, 2020, 11, 704-711.	1.9	20
8	Optimization of adhesive performance of waterborne poly(urethane-urea)s for adhesion on high and low surface energy surfaces. Progress in Organic Coatings, 2020, 140, 105495.	1.9	7
9	Giant Bowing of the Bandgap and Spin-Orbit Splitting in GaP1-xBix Dilute Bismide Alloys. , 2020, , .		0
10	Thermodynamics of Model PαMSAN/dPMMA Blend: A Combined Study by SANS, Ellipsometry, and Locally Correlated Lattice (LCL) Theory. Macromolecules, 2020, 53, 7084-7095.	2.2	5
11	Diffusiophoresis-Driven Stratification of Polymers in Colloidal Films. ACS Macro Letters, 2020, 9, 1286-1291.	2.3	15
12	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	7.8	48
13	Introducing Porosity in Colloidal Biocoatings to Increase Bacterial Viability. Biomacromolecules, 2020, 21, 4545-4558.	2.6	12
14	Boron-Loaded Polymeric Sensor for the Direct Detection of Thermal Neutrons. ACS Applied Materials & Interfaces, 2020, 12, 33050-33057.	4.0	7
15	Biocoatings: Painting bacteria on surfaces. Access Microbiology, 2020, 2, .	0.2	Ο
16	Reactive Polymorphic Nanoparticles: Preparation via Polymerizationâ€Induced Selfâ€Assembly and Postsynthesis Thiol– <i>para</i> â€Fluoro Core Modification. Macromolecular Rapid Communications, 2019, 40, e1800346.	2.0	26
17	Competition between Crystallization and Coalescence during the Film Formation of Poly(Chloroprene) Latex and Effects on Mechanical Properties. Industrial & Engineering Chemistry Research, 2019, 58, 21031-21043.	1.8	4
18	Film Formation of High <i>T</i> _g Latex Using Hydroplasticization: Explanations from NMR Relaxometry. Langmuir, 2019, 35, 12418-12427.	1.6	22

#	Article	IF	CITATIONS
19	Giant bowing of the band gap and spin-orbit splitting energy in GaP1â^'xBix dilute bismide alloys. Scientific Reports, 2019, 9, 6835.	1.6	11
20	In Situ Monitoring of Latex Film Formation by Small-Angle Neutron Scattering: Evolving Distributions of Hydrophilic Stabilizers in Drying Colloidal Films. Langmuir, 2019, 35, 3822-3831.	1.6	18
21	Optical functions and critical points of dilute bismide alloys studied by spectroscopic ellipsometry. Journal of Applied Physics, 2018, 123, .	1.1	13
22	Colloidal polymer composites: Are nano-fillers always better for improving mechanical properties?. Journal of Colloid and Interface Science, 2018, 523, 45-55.	5.0	15
23	Enhanced Water Barrier Properties of Surfactant-Free Polymer Films Obtained by MacroRAFT-Mediated Emulsion Polymerization. ACS Applied Materials & Interfaces, 2018, 10, 11221-11232.	4.0	48
24	Design of Waterborne Nanoceria/Polymer Nanocomposite UV-Absorbing Coatings: Pickering versus Blended Particles. ACS Applied Nano Materials, 2018, 1, 3956-3968.	2.4	20
25	A critical and quantitative review of the stratification of particles during the drying of colloidal films. Soft Matter, 2018, 14, 6181-6197.	1.2	76
26	Tightening of gelatin chemically crosslinked networks assisted by physical gelation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1850-1858.	2.4	5
27	Stratification in binary colloidal polymer films: experiment and simulations. Soft Matter, 2017, 13, 6969-6980.	1.2	60
28	High-performance water-based barrier coatings for the corrosion protection of structural steel. Steel Construction, 2017, 10, 254-259.	0.4	13
29	Hydrophilic MacroRAFT-Mediated Emulsion Polymerization: Synthesis of Latexes for Cross-Linked and Surfactant-Free Films. Macromolecules, 2017, 50, 9315-9328.	2.2	52
30	Controlling the crystal polymorph by exploiting the time dependence of nucleation rates. Journal of Chemical Physics, 2017, 147, 144505.	1.2	5
31	pH-Switchable Stratification of Colloidal Coatings: Surfaces "On Demand― ACS Applied Materials & Interfaces, 2016, 8, 34755-34761.	4.0	40
32	Dynamic Stratification in Drying Films of Colloidal Mixtures. Physical Review Letters, 2016, 116, 118301.	2.9	105
33	Explanations for water whitening in secondary dispersion and emulsion polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1658-1674.	2.4	34
34	Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process. ACS Nano, 2016, 10, 2232-2242.	7.3	41
35	Water Vapor Sorption and Diffusion in Secondary Dispersion Barrier Coatings: A Critical Comparison with Emulsion Polymers. ACS Applied Materials & amp; Interfaces, 2015, 7, 12147-12157.	4.0	28
36	Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic) Tj ETQq0 0 () rgBT /Ove 5.0	rlock 10 Tf 50 33

448, 8-16.

#	Article	IF	CITATIONS
37	Does the Î ³ Polymorph of Glycine Nucleate Faster? A Quantitative Study of Nucleation from Aqueous Solution. Crystal Growth and Design, 2015, 15, 5345-5354.	1.4	18
38	Acrylic-Alkyd Hybrids: Secondary Nucleation, Particle Morphology, and Limiting Conversions. Macromolecular Reaction Engineering, 2014, 8, 622-638.	0.9	5
39	Power Density Threshold for Switching Off the Tack Adhesion of Colloidal Nanocomposites. Macromolecular Chemistry and Physics, 2014, 215, 998-1003.	1.1	1
40	MoS ₂ Nanoplatelet Fillers for Enhancement of the Properties of Waterborne Pressure-Sensitive Adhesives. ACS Applied Materials & Interfaces, 2014, 6, 22640-22648.	4.0	20
41	Correlating Particle Deformation with Water Concentration Profiles during Latex Film Formation: Reasons That Softer Latex Films Take Longer to Dry. Langmuir, 2014, 30, 9672-9681.	1.6	46
42	Simultaneous Freeâ€Radical and Addition Miniemulsion Polymerization: Effect of the Chain Transfer Agent on the Microstructure of Polyurethaneâ€Acrylic Pressureâ€Sensitive Adhesives. Macromolecular Materials and Engineering, 2013, 298, 53-66.	1.7	28
43	Directed organization of gold nanoparticles in polymer coatings through infrared-assisted evaporative lithography. Chemical Communications, 2013, 49, 4253-4255.	2.2	14
44	Enhanced x-ray detection sensitivity in semiconducting polymer diodes containing metallic nanoparticles. Journal Physics D: Applied Physics, 2013, 46, 275102.	1.3	50
45	Aesthetically textured, hard latex coatings by fast IR-assisted evaporative lithography. Progress in Organic Coatings, 2013, 76, 1786-1791.	1.9	11
46	Influence of Polyol Molecular Weight and Type on the Tack and Peel Properties of Waterborne Polyurethane Pressureâ€ <scp>S</scp> ensitive Adhesives. Macromolecular Reaction Engineering, 2013, 7, 493-503.	0.9	37
47	Use of a Routh–Russel Deformation Map To Achieve Film Formation of a Latex with a High Glass Transition Temperature. Langmuir, 2013, 29, 2044-2053.	1.6	26
48	Large-Area Patterning of the Tackiness of a Nanocomposite Adhesive by Sintering of Nanoparticles under IR Radiation. ACS Applied Materials & Interfaces, 2013, 5, 2137-2145.	4.0	5
49	Direct detection of 6 MV x-rays from a medical linear accelerator using a semiconducting polymer diode. Physics in Medicine and Biology, 2013, 58, 4471-4482.	1.6	20
50	Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer x-ray detectors. Nanotechnology, 2012, 23, 235502.	1.3	60
51	Hydrogen-Bonding-Driven Self-Assembly of PEGylated Organosilica Nanoparticles with Poly(acrylic) Tj ETQq1 1 299-306.	0.784314 r 1.6	rgBT /Overloc 33
52	Autostratification in Drying Colloidal Dispersions: Experimental Investigations. Langmuir, 2012, 28, 3420-3428.	1.6	70
53	Importance of Capillary Forces in the Assembly of Carbon Nanotubes in a Polymer Colloid Lattice. Langmuir, 2012, 28, 8266-8274.	1.6	8
54	Switching Off the Tackiness of a Nanocomposite Adhesive in 30 s via Infrared Sintering. ACS Applied Materials & Interfaces, 2012, 4, 5442-5452.	4.0	44

#	Article	IF	CITATIONS
55	Transformation of waterborne hybrid polymer particles into films: Morphology development and modeling. Polymer, 2012, 53, 1098-1108.	1.8	31
56	Bespoke periodic topography in hard polymer films by infrared radiation-assisted evaporative lithography. Soft Matter, 2011, 7, 11098.	1.2	25
57	Locking Carbon Nanotubes in Confined Lattice Geometries â^' A Route to Low Percolation in Conducting Composites. Journal of Physical Chemistry B, 2011, 115, 6395-6400.	1.2	90
58	Resolving the Film-Formation Dilemma with Infrared Radiation-Assisted Sintering. Langmuir, 2011, 27, 2176-2180.	1.6	26
59	Waterborne Polyurethaneâ^ Acrylic Hybrid Nanoparticles by Miniemulsion Polymerization: Applications in Pressure-Sensitive Adhesives. Langmuir, 2011, 27, 3878-3888.	1.6	105
60	Some insights into the structural relaxation of spin-cast, glassy polymer thin films. Polymer Journal, 2011, 43, 214-217.	1.3	5
61	High charge-carrier mobilities in blends of poly(triarylamine) and TIPS-pentacene leading to better performing X-ray sensors. Organic Electronics, 2011, 12, 1903-1908.	1.4	56
62	Probing the early stages of solvent evaporation and relaxation in solvent ast polymer thin films by spectroscopic ellipsometry. Surface and Interface Analysis, 2011, 43, 1448-1452.	0.8	15
63	Simultaneous free radical and addition miniemulsion polymerization: Effect of the diol on the microstructure of polyurethane-acrylic pressure-sensitive adhesives. Polymer, 2011, 52, 3021-3030.	1.8	40
64	Enhanced Thermal Actuation in Thin Polymer Films Through Particle Nanoâ€ S queezing by Carbon Nanotube Belts. Advanced Materials, 2010, 22, 5310-5314.	11.1	7
65	Colloidâ€Assisted Selfâ€Assembly of Robust, Threeâ€Dimensional Networks of Carbon Nanotubes over Large Areas. Macromolecular Rapid Communications, 2010, 31, 609-615.	2.0	25
66	Drying of Latex Films. Springer Laboratory, 2010, , 95-120.	0.2	1
67	Cross-Linked Network Development in Compatibilized Alkyd/Acrylic Hybrid Latex Films for the Creation of Hard Coatings. Langmuir, 2010, 26, 14323-14333.	1.6	25
68	Nanocomposite Latex Films and Control of Their Properties. Springer Laboratory, 2010, , 213-259.	0.2	1
69	Waterborne, Semicrystalline, Pressure-Sensitive Adhesives with Temperature-Responsiveness and Optimum Properties. ACS Applied Materials & amp; Interfaces, 2010, 2, 443-451.	4.0	28
70	Achieving a Stable Time Response in Polymeric Radiation Sensors under Charge Injection by X-rays. ACS Applied Materials & Interfaces, 2010, 2, 1692-1699.	4.0	49
71	Fundamentals of Latex Film Formation. Springer Laboratory, 2010, , .	0.2	193
72	Adhesion of microorganisms to bovine submaxillary mucin coatings: effect of coating deposition conditions. Biofouling, 2010, 26, 387-397.	0.8	35

#	Article	IF	CITATIONS
73	Cell adhesion on nanopatterned fibronectin substrates. Soft Matter, 2010, 6, 5408.	1.2	28
74	An Introduction to Latex and the Principles of Colloidal Stability. Springer Laboratory, 2010, , 1-26.	0.2	5
75	Particle Deformation. Springer Laboratory, 2010, , 121-150.	0.2	4
76	Surfactant Distribution in Latex Films. Springer Laboratory, 2010, , 185-212.	0.2	9
77	Established and Emerging Techniques of Studying Latex Film Formation. Springer Laboratory, 2010, , 27-94.	0.2	Ο
78	Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection. Journal of Applied Physics, 2009, 106, .	1.1	57
79	Flexible radiation dosimeters incorporating semiconducting polymer thick films. Proceedings of SPIE, 2009, , .	0.8	14
80	Design and fabrication of colloidal polymer nanocomposites. Advances in Colloid and Interface Science, 2009, 147-148, 319-332.	7.0	80
81	An experimental test of the scaling prediction for the spatial distribution of water during the drying of colloidal films. European Physical Journal: Special Topics, 2009, 166, 21-27.	1.2	31
82	The Uptake and Release of Cationic Surfactant from polyampholyte Microgel Particles in Dispersion and as an Adsorbed Monolayer. Langmuir, 2009, 25, 9677-9683.	1.6	19
83	A Comparison of Tackified, Miniemulsion Coreâ^'Shell Acrylic Latex Films with Corresponding Particle-Blend Films: Structureâ^'Property Relationships. Langmuir, 2009, 25, 11021-11031.	1.6	25
84	Protein Nanopatterning on Self-Organized Poly(styrene- <i>b</i> -isoprene) Thin Film Templates. Langmuir, 2009, 25, 4526-4534.	1.6	46
85	Spectroscopic Ellipsometry of Mucin Layers on an Amphiphilic Diblock Copolymer Surface. Applied Spectroscopy, 2009, 63, 889-898.	1.2	30
86	Soft polymer and nano-clay supracolloidal particles in adhesives: synergistic effects on mechanical properties. Soft Matter, 2009, 5, 3842.	1.2	79
87	Deformation and adhesion of a periodic soft–soft nanocomposite designed with structured polymer colloid particles. Soft Matter, 2009, 5, 1440.	1.2	71
88	pH Dependence of the Properties of Waterborne Pressure-Sensitive Adhesives Containing Acrylic Acid. ACS Applied Materials & Interfaces, 2009, 1, 631-639.	4.0	56
89	Protein adsorption on materials for recording sites on implantable microelectrodes. Journal of Materials Science: Materials in Medicine, 2008, 19, 143-151.	1.7	25
90	The diacetone acrylamide crosslinking reaction and its influence on the film formation of an acrylic latex. Journal of Coatings Technology Research, 2008, 5, 285-297.	1.2	73

#	Article	IF	CITATIONS
91	A Molecular Mechanism for Toughening and Strengthening Waterborne Nanocomposites. Advanced Materials, 2008, 20, 90-94.	11.1	33
92	Lateral surface nonuniformities in drying latex films. AICHE Journal, 2008, 54, 3092-3105.	1.8	28
93	Importance of Molecular Friction in a Soft Polymerâ^Nanotube Nanocomposite. Macromolecules, 2008, 41, 7656-7661.	2.2	28
94	Correlation of Silicone Incorporation into Hybrid Acrylic Coatings with the Resulting Hydrophobic and Thermal Properties. Macromolecules, 2008, 41, 8537-8546.	2.2	66
95	Heterogeneous Drying of Colloidal Polymer Films: Dependence on Added Salt. Langmuir, 2008, 24, 7580-7589.	1.6	39
96	Direct x-ray detection with conjugated polymer devices. Applied Physics Letters, 2007, 91, .	1.5	67
97	Absorption of Cetylpyridinium Chloride into Poly(<i>N</i> -isopropylacrylamide)-Based Microgel Particles, in Dispersion and as Surface-Deposited Monolayers. Langmuir, 2007, 23, 9572-9577.	1.6	37
98	An alternative approach to the modification of talc for the fabrication of polypropylene/talc composites. Journal of Applied Polymer Science, 2007, 106, 386-393.	1.3	16
99	Probing particle structure in waterborne pressure-sensitive adhesives with atomic force microscopy. Journal of Colloid and Interface Science, 2007, 307, 56-63.	5.0	36
100	Skin Development during the Film Formation of Waterborne Acrylic Pressure-Sensitive Adhesives Containing Tackifying Resin. Journal of Adhesion, 2006, 82, 217-238.	1.8	39
101	Swelling and Deswelling of Adsorbed Microgel Monolayers Triggered by Changes in Temperature, pH, and Electrolyte Concentration. Langmuir, 2006, 22, 5036-5041.	1.6	113
102	Bandgap enhancement of layered nanocrystalline silicon from excimer laser crystallization. Nanotechnology, 2006, 17, 5412-5416.	1.3	15
103	The fine dispersion of functionalized carbon nanotubes in acrylic latex coatings. Progress in Organic Coatings, 2006, 57, 91-97.	1.9	44
104	Waterborne, Nanocomposite Pressure-Sensitive Adhesives with High Tack Energy, Optical Transparency, and Electrical Conductivity. Advanced Materials, 2006, 18, 2730-2734.	11.1	130
105	Infrared ellipsometry of interdiffusion in thin films of miscible polymers. Surface and Interface Analysis, 2005, 37, 33-41.	0.8	7
106	Thickness dependence of structural relaxation in spin-cast, glassy polymer thin films. Physical Review E, 2004, 70, 051805.	0.8	55
107	Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings. Journal of Polymer Science Part A, 2004, 42, 1421-1431.	2.5	43
108	Water vapour sorption by the pedal mucus trail of a land snail. Colloids and Surfaces B: Biointerfaces, 2004, 33, 251-258.	2.5	14

#	Article	IF	CITATIONS
109	Structural relaxation of spin-cast glassy polymer thin films as a possible factor in dewetting. European Physical Journal E, 2003, 12, 437-441.	0.7	45
110	Influence of the glass transition on solvent loss from spin-cast glassy polymer thin films. European Physical Journal E, 2003, 12, 87-91.	0.7	31
111	The dependence of the rate of crosslinking in poly(dimethyl siloxane) on the thickness of coatings. Polymer, 2003, 44, 4829-4838.	1.8	61
112	Magnetic resonance profiling studies of the drying of film-forming aqueous dispersions and glue layers. Magnetic Resonance Imaging, 2003, 21, 235-241.	1.0	29
113	Distribution of Surfactants near Acrylic Latex Film Surfaces:Â A Comparison of Conventional and Reactive Surfactants (Surfmers). Langmuir, 2003, 19, 3212-3221.	1.6	89
114	Evidence from infrared ellipsometry for covalent bonding at a polymer/polymer interface with relevance to "lock-up" in pressure-sensitive adhesive laminates. Journal of Adhesion, 2003, 79, 1207-1218.	1.8	6
115	Slow Relaxation of Spin-Cast Poly(methyl methacrylate) Confined in Thin Films. Materials Research Society Symposia Proceedings, 2003, 790, 1.	0.1	1
116	Morphology and elasticity of waterborne acrylic pressure-sensitive adhesives investigated with atomic force microscopy. Journal of Adhesion Science and Technology, 2003, 17, 243-259.	1.4	21
117	Origins and Effects of a Surfactant Excess near the Surface of Waterborne Acrylic Pressure-Sensitive Adhesives. Langmuir, 2002, 18, 4478-4487.	1.6	83
118	Watching paint dry: Magnetic resonance imaging of soft condensed matter. Europhysics News, 2002, 33, 48-51.	0.1	6
119	Influence of drier combination on through-drying in waterborne alkyd emulsion coatings observed with magnetic resonance profiling. Journal of Coatings Technology, 2002, 74, 113-124.	0.7	38
120	Title is missing!. Journal of Materials Science, 2002, 37, 4759-4768.	1.7	5
121	Vertical water distribution during the drying of polymer films cast from aqueous emulsions. European Physical Journal E, 2002, 8, 421-429.	0.7	64
122	MR Profiling of Drying in Alkyd Emulsions: Origins of Skin Formation. , 2002, , 317-326.		0
123	Lateral Drying in Thick Films of Waterborne Colloidal Particles. Langmuir, 2001, 17, 3202-3207.	1.6	75
124	Obtaining and Interpreting Images of Waterborne Acrylic Pressure-Sensitive Adhesives by Tapping-Mode Atomic Force Microscopy. Langmuir, 2001, 17, 7022-7031.	1.6	42
125	Fickian Ingress of Binary Solvent Mixtures into Glassy Polymer. Macromolecules, 2001, 34, 890-895.	2.2	11
126	Nano-mechanical properties and topography of thermosetting acrylic powder coatings. Journal of Coatings Technology, 2001, 73, 65-73.	0.7	10

#	Article	IF	CITATIONS
127	Structural analysis of organic interfacial layers by ellipsometry. Current Opinion in Colloid and Interface Science, 2001, 6, 102-110.	3.4	64
128	Drying Modes of Polymer Colloids. ACS Symposium Series, 2001, , 2-26.	0.5	21
129	Molecular Weight Effects on the Film Formation of Latex and on Surfactant Distribution and Morphology. ACS Symposium Series, 2001, , 58-87.	0.5	4
130	New techniques for determining the extent of crosslinking in coatings. Progress in Organic Coatings, 2001, 43, 85-98.	1.9	30
131	Use of ellipsometry and gravimetry to develop calibration standards for measuring silicone coat weight and thickness with x-ray fluorescence spectroscopy. Surface and Interface Analysis, 2000, 29, 341-345.	0.8	12
132	Water sorption in polymer network films synthesised from PEO oligomers containing acrylic and vinyl ether functionalities. Polymer Bulletin, 2000, 45, 431-438.	1.7	7
133	Depth Profiles of Polymer Mobility during the Film Formation of a Latex Dispersion Undergoing Photoinitiated Cross-Linking. Macromolecules, 2000, 33, 8443-8452.	2.2	38
134	Surface levelling of thermosetting powder coatings: theory and experiment. Journal Physics D: Applied Physics, 2000, 33, 1975-1981.	1.3	24
135	Lateral Transport of Water during Drying of Alkyd Emulsions. Langmuir, 2000, 16, 1057-1065.	1.6	38
136	Film Formation of Latex Blends with Bimodal Particle Size Distributions:Â Consideration of Particle Deformability and Continuity of the Dispersed Phase. Macromolecules, 2000, 33, 2695-2708.	2.2	104
137	pH-Controlled Adsorption of Polyelectrolyte Diblock Copolymers at the Solid/Liquid Interface. Langmuir, 2000, 16, 5980-5986.	1.6	38
138	Adsorption of Penta(ethylene glycol) Monododecyl Ether at the Solid Poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 1	0)2 Td (metha
139	Bayesian inference analysis of ellipsometry data. Physical Review E, 1999, 59, 6138-6151.	0.8	22
140	Magnetic-resonance determination of the spatial dependence of the droplet size distribution in the cream layer of oil-in-water emulsions: Evidence for the effects of depletion flocculation. Physical Review E, 1999, 59, 874-884.	0.8	41
141	Processing and characterisation of sol–gel deposited Ta2O5 and TiO2–Ta2O5 dielectric thin films. Solid-State Electronics, 1999, 43, 1095-1099.	0.8	38
142	The reduced adsorption of lysozyme at the phosphorylcholine incorporated polymer/aqueous solution interface studied by spectroscopic ellipsometry. Biomaterials, 1999, 20, 1501-1511.	5.7	43
143	Surfactant concentration and morphology at the surfaces of acrylic latex films. Progress in Organic Coatings, 1999, 35, 89-99.	1.9	61
144	Structure of self-assembled layers on silicon: Combined use of spectroscopic variable angle ellipsometry, neutron reflection, and atomic force microscopy. Journal of Applied Physics, 1999, 85, 868-875.	1.1	31

ARTICLE IF CITATIONS Equilibrium Swelling of Hydrophilic Polyacrylates in Humid Environments. Macromolecules, 1999, 32, 145 2.2 136-144. Polymer Dynamics in Thin Films., 1998, 149-157. 146 0 Film Formation of Latices., 1998, , 51-59. Concentration Profiles in Creaming Oil-in-Water Emulsion Layers Determined with Stray Field 148 1.6 21 Magnetic Resonance Imaging. Langmuir, 1997, 13, 3621-3626. Film Formation of Acrylic Latices with Varying Concentrations of Non-Film-Forming Latex Particles. 149 1.6 85 Langmuir, 1996, 12, 3793-3801. Rate-Limiting Steps in Film Formation of Acrylic Latices as Elucidated with Ellipsometry and 150 0.5 31 Environmental Scanning Electron Microscopy. ACS Symposium Series, 1996, , 332-348. Glass Transition Behavior in Ultraâ€Thin Polystyrene Films. Israel Journal of Chemistry, 1995, 35, 21-26. 1.0 128 Kinetics of Film Formation in Acrylic Latices Studied with Multiple-Angle-of-Incidence Ellipsometry 152 2.2 172 and Environmental SEM. Macromolecules, 1995, 28, 2673-2682. Size-Dependent Depression of the Glass Transition Temperature in Polymer Films. Europhysics Letters, 1,672 1994, 27, 59-64. Interrelationship between Densification, Crystallization, and Chemical Evolution in Sol-Gel Titania 154 1.9 62 Thin Films. Journal of the American Ceramic Society, 1994, 77, 1592-1596. Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday 1.6 946 Discussions, 1994, 98, 219. Depression of the Glass Transition Temperature in Ultra-Thin, Grafted Polystyrene Films. Materials 156 0.1 4 Research Society Symposia Proceedings, 1994, 366, 183. Ion-Beam-Induced Densification of Zirconia Sol-Gel Thin Films. Journal of the American Ceramic 1.9 33 Society, 1993, 76, 1369-1372. Relationship between Water Desorption and Low-Temperature Densification of Colloidal Anatase Thin 158 1.9 10 Films. Journal of the American Ceramic Society, 1993, 76, 2529-2533. Neutron Reflectometry Characterization of Interface Width between Sol-Gel Titanium Dioxide and Silicon Dioxide Thin Films. Journal of the American Ceramic Society, 1993, 76, 2534-2538. <title>Characterization of spin-on titanium nitride</title>., 1993,,. 160 0 Electrically conducting glasses: incorporation of polypyrrole in a porous SiO2 matrix. Journal of Non-Crystalline Solids, 1991, 136, 97-102. 161 1.5 30 Effect of Heating Rate on the Sintering of Titanium Dioxide Thin Films: Competition between 162 1.9 64 Densification and Crystallization. Journal of the American Ceramic Society, 1991, 74, 2669-2671.

JOSEPH KEDDIE

#	Article	IF	CITATIONS
163	Effect of Nitridation Rate on the Composition and Conductivity of Titanium Nitride Films Prepared from Sol-Gel Titania. Journal of the American Ceramic Society, 1991, 74, 2937-2940.	1.9	18
164	Optical Interference Filters By Sol-Gel Processing. Materials Research Society Symposia Proceedings, 1990, 180, 383.	0.1	5
165	Microstructural Evolution of TiO2 Sol-Gel Thin Films. Materials Research Society Symposia Proceedings, 1990, 180, 425.	0.1	5
166	Ion-Beam Analysis of Silica Sol-Gel Films: Structural and Compositional Evolution. Journal of the American Ceramic Society, 1990, 73, 3106-3109.	1.9	19
167	Mixed Solvent Ingress into PMMA Measured by Stray Field Magnetic Resonance Imaging. , 0, , 241-252.		0