M Gallardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1975380/publications.pdf Version: 2024-02-01

MCALLARDO

#	Article	IF	CITATIONS
1	Melatonin content in walnuts and other commercial nuts. Influence of cultivar, ripening and processing (roasting). Journal of Food Composition and Analysis, 2022, 105, 104180.	3.9	7
2	Role of Melatonin in Apple Fruit during Growth and Ripening: Possible Interaction with Ethylene. Plants, 2022, 11, 688.	3.5	15
3	Transcriptome and Hormone Analyses Revealed Insights into Hormonal and Vesicle Trafficking Regulation among Olea europaea Fruit Tissues in Late Development. International Journal of Molecular Sciences, 2020, 21, 4819.	4.1	10
4	Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission. Plant and Cell Physiology, 2020, 61, 814-825.	3.1	13
5	Sphingolipids during olive fruit ripening. Acta Horticulturae, 2020, , 565-572.	0.2	0
6	Sphingolipid and sterol accumulation during olive fruit abscission. Acta Horticulturae, 2020, , 581-588.	0.2	0
7	Brassinosteroid-induced modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development. Acta Horticulturae, 2020, , 589-596.	0.2	0
8	Melatonin and related bioactive compounds in commercialized date palm fruits (Phoenix dactylifera) Tj ETQq0 0 0 51-59.) rgBT /Ov 3.3	verlock 10 Tf 25
9	Modulation of sphingolipid long-chain base composition and gene expression during early olive-fruit development, and putative role of brassinosteroid. Journal of Plant Physiology, 2018, 231, 383-392.	3.5	14
10	Sphingolipid Distribution, Content and Gene Expression during Olive-Fruit Development and Ripening. Frontiers in Plant Science, 2018, 9, 28.	3.6	15
11	ENDOGENOUS FREE POLYAMINES IN THE ABSCISSION ZONE OF OLIVE FRUIT. Acta Horticulturae, 2012, , 123-127.	0.2	1
12	THE INTERACTION BETWEEN ETHYLENE AND POLYAMINES DURING RIPENING OF OLIVE FRUIT. Acta Horticulturae, 2012, , 147-153.	0.2	3
13	Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta, 2010, 232, 629-647.	3.2	43
14	Mature fruit abscission is associated with up-regulation of polyamine metabolism in the olive abscission zone. Journal of Plant Physiology, 2010, 167, 1432-1441.	3.5	33
15	Flower fertilization and fruit development prompt changes in free polyamines and ethylene in damson plum (Prunus insititia L.). Journal of Plant Physiology, 2006, 163, 86-97.	3.5	34
16	Polyamine contents, ethylene synthesis, and BrACO2 expression during turnip germination. Biologia Plantarum, 2006, 50, 574-580.	1.9	13
17	Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Science Research, 2005, 15, 63-76.	1.7	104
18	The zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alterations in the levels of free and conjugated abscisic acid and polyamines. Physiologia Plantarum, 2003, 117, 279-288.	5.2	24

M GALLARDO

#	Article	IF	CITATIONS
19	The heterogeneity of turnip-tops (Brassica rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content. Functional Plant Biology, 2003, 30, 767.	2.1	25
20	Involvement of calcium in ACC-oxidase activity from Cicer arietinum seed embryonic axes. Phytochemistry, 1999, 50, 373-376.	2.9	18
21	Alleviation of Thermoinhibition in Chickpea Seeds by Putrescine Involves the Ethylene Pathway. Functional Plant Biology, 1996, 23, 479.	2.1	16
22	Biochemical properties of 1-aminocyclopropane-1-carboxylateN-malonyltransferase activity from early growing embryonic axes of chick-pea (Cicer arietinumL.) seeds. Journal of Experimental Botany, 1996, 47, 1771-1778.	4.8	10
23	Preliminary characterization of 1-aminocyclopropane-1-carboxylate oxidase properties from embryonic axes of chick-pea (Cicer arietinumL.) seeds. Journal of Experimental Botany, 1995, 46, 695-700.	4.8	17
24	Alterations of the ethylene pathway in germinating thermoinhibited chick-pea seeds caused by the inhibition of polyamine biosynthesis. Plant Science, 1995, 104, 169-175.	3.6	16
25	Inhibition of polyamine synthesis by cyclohexylamine stimulates the ethylene pathway and accelerates the germination of Cicer arietinum seeds. Physiologia Plantarum, 1994, 91, 9-16.	5.2	3
26	The relationships between ethylene production and germination ofCicer arietinum seeds. Biologia Plantarum, 1994, 36, 201.	1.9	22
27	Inhibition of polyamine synthesis by cyclohexylamine stimulates the ethylene pathway and accelerates the germination of Cicer arietinum seeds. Physiologia Plantarum, 1994, 91, 9-16.	5.2	38
28	Effect of short-chain fatty acids on the ethylene pathway in embryonic axes of Cicer arietinum during germination. Physiologia Plantarum, 1994, 92, 629-635.	5.2	6
29	Germination of chick-pea seeds in relation to manipulation of the ethylene pathway and polyamine biosynthesis by inhibitors. Plant Science, 1994, 97, 31-37.	3.6	14
30	Thermoinhibition alters the polyamine levels in cotyledons and embryonic axes during germination of stratified chick-pea seeds. Plant Science, 1994, 101, 143-150.	3.6	5
31	Content and Distribution of Free and Bound Polyamines in Embryonic Axes of Chick-Pea Seeds. Journal of Plant Physiology, 1993, 142, 347-354.	3.5	9
32	Free polyamines in Cicer arietinum seeds during the onset of germination. Phytochemistry, 1992, 31, 2283-2287.	2.9	28
33	Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds. Plant Physiology, 1991, 97, 122-127.	4.8	69