Vera Terekhova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1974680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Outlining the Potential Role of Humic Products in Modifying Biological Properties of the Soil—A Review. Frontiers in Environmental Science, 2019, 7, .	1.5	50
2	Soil bioassay: Problems and approaches. Eurasian Soil Science, 2011, 44, 173-179.	0.5	45
3	Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere, 2018, 203, 228-238.	4.2	42
4	Humic preparations and the assessment of their biological activity for certification purposes. Eurasian Soil Science, 2011, 44, 1222-1230.	0.5	38
5	The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments. Environmental Pollution, 2017, 229, 516-524.	3.7	35
6	Improvement of laboratory phytotest for the ecological evaluation of soils. Eurasian Soil Science, 2017, 50, 1105-1114.	0.5	31
7	Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Archives of Microbiology, 2010, 192, 135-141.	1.0	29
8	Engineered nanomaterials in soil: Sources of entry and migration pathways. Moscow University Soil Science Bulletin, 2013, 68, 129-134.	0.1	29
9	Root Elongation Method for the Quality Assessment of Metal-Polluted Soils: Whole Soil or Soil-Water Extract?. Journal of Soil Science and Plant Nutrition, 2020, 20, 2294-2303.	1.7	20
10	Using humic products as amendments to restore Zn and Pb polluted soil: a case study using rapid screening phytotest endpoint. Journal of Soils and Sediments, 2018, 18, 750-761.	1.5	18
11	An Automated Approach to Groundwater Quality Monitoring—Geospatial Mapping Based on Combined Application of Gaussian Process Regression and Bayesian Information Criterion. Water (Switzerland), 2021, 13, 400.	1.2	18
12	The structure of micromycete communities and their synecologic interactions with basidiomycetes during plant debris decomposition. Microbiology, 2005, 74, 91-96.	0.5	17
13	Spectral Characterization of Fungal Metabolites in Aqueous Medium with Humus Substances. Journal of Spectroscopy, 2013, 2013, 1-7.	0.6	15
14	The triad approach to ecological assessment of urban soils. Eurasian Soil Science, 2014, 47, 952-958.	0.5	15
15	Assessment of the ecological risk of technogenic soil pollution on the basis of the statistical distribution of the occurrence of micromycete species. Russian Journal of Ecology, 2017, 48, 417-424.	0.3	15
16	Biodegradation of humic substances by microscopic filamentous fungi: chromatographic and spectroscopic proxies. Journal of Soils and Sediments, 2019, 19, 2676-2687.	1.5	15
17	Effects of Humic Acids on the Ecotoxicity of Fe3O4 Nanoparticles and Fe-Ions: Impact of Oxidation and Aging. Nanomaterials, 2020, 10, 2011.	1.9	15
18	Biotesting of Soil Ecotoxicity in Case of Chemical Contamination: Modern Approaches to Integration for Environmental Assessment (a Review). Eurasian Soil Science, 2022, 55, 601-612.	0.5	14

Vera Terekhova

#	Article	IF	CITATIONS
19	Ecological evaluation of artificial soils treated with phosphogypsum. Eurasian Soil Science, 2013, 46, 697-703.	0.5	13
20	Microbiological Indicators of Heavy Metals and Carbon-Containing Preparations Applied to Agrosoddy-Podzolic Soils Differing in Humus Content. Eurasian Soil Science, 2021, 54, 448-458.	0.5	13
21	Dynamics of zoomicrobial complexes upon decomposition of plant litter in spruce forests of the southern taiga. Eurasian Soil Science, 2011, 44, 38-48.	0.5	11
22	Engineered nanomaterials in soil: Problems in assessing their effect on living organisms. Eurasian Soil Science, 2013, 46, 1203-1210.	0.5	11
23	Bioassay standardization issues in freshwater ecosystem assessment: test cultures and test conditions. Knowledge and Management of Aquatic Ecosystems, 2018, , 32.	0.5	10
24	Comparison of Eluate and Direct Soil Bioassay Methods of Soil Assessment in the Case of Contamination with Heavy Metals. Eurasian Soil Science, 2019, 52, 464-470.	0.5	10
25	The importance of mycological studies for soil quality control. Eurasian Soil Science, 2007, 40, 583-587.	0.5	9
26	Comparison of Two Integrated Biotic Indices in Assessing the Effects of Humic Products in a Model Experiment. Eurasian Soil Science, 2019, 52, 736-746.	0.5	9
27	Machine learning methods for estimation the indicators of phosphogypsum influence in soil. Journal of Soils and Sediments, 2019, 19, 2265-2276.	1.5	9
28	Triad method for assessing the remediation effect of humic preparations on urbanozems. Eurasian Soil Science, 2015, 48, 654-663.	0.5	7
29	Engineered Nanomaterials' Effects on Soil Properties: Problems and Advances in Investigation. Soil Biology, 2017, , 115-136.	0.6	7
30	Effect of Exogenic Humic Substances on Various Growth Endpoints of Alternaria alternata and Trichoderma harzianum in the Experimental Conditions. Waste and Biomass Valorization, 2021, 12, 211-222.	1.8	7
31	Phytotoxicity of Heavy Metals in Contaminated Podzolic Soils of Different Fertility Levels. Eurasian Soil Science, 2021, 54, 964-974.	0.5	7
32	Micromycete Lipids and Stress. Microbiology, 2021, 90, 37-55.	0.5	7
33	Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles. RSC Advances, 2021, 11, 32227-32235.	1.7	7
34	Biotesting for Cd pollution in soils. Moscow University Soil Science Bulletin, 2010, 65, 179-182.	0.1	5
35	Effect of humic acid on the composition of osmolytes and lipids in a melanin-containing phytopathogenic fungus Alternaria alternata. Environmental Research, 2021, 193, 110395.	3.7	5
36	Drill cuttings in the environment: possible ways to improve their properties. Journal of Soils and Sediments, 2021, 21, 1974-1988.	1.5	5

Vera Terekhova

#	Article	IF	CITATIONS
37	Ecotoxicity of polyelectrolyte formulations in water and soil matrices. Environmental Science and Pollution Research, 2022, 29, 65489-65499.	2.7	5
38	Characterization and bioactivity of magnetite-based nanocomposites. Materials Today: Proceedings, 2021, 34, 317-321.	0.9	4
39	Surfactant-enhanced treatment of oil-contaminated Arctic tundra soil: Ecotoxicological assessment. Environmental Technology and Innovation, 2021, 23, 101570.	3.0	4
40	Structure and role of microbial communities in southern taiga soils. Microbiology, 2000, 69, 371-380.	0.5	3
41	Ion-Plasma Diffusion Aluminide Coatings for Gas Turbine Blades (Structure and Properties). Metal Science and Heat Treatment, 2003, 45, 15-22.	0.2	3
42	Establishment of a landfill impact zone on soils using structural and functional modifications of microbial communities. Moscow University Soil Science Bulletin, 2010, 65, 94-97.	0.1	3
43	Magnetite–Activated Carbon Nanocomposites: Synthesis, Sorption Properties, and Bioavailability. Russian Journal of Applied Chemistry, 2020, 93, 1202-1210.	0.1	2
44	Effect of an Equal Dose of Polymetallic Pollution on the Microbiological Characteristics of Two Soils with Different Organic Carbon Contents. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
45	Structure of Microbial Complexes in Modelling of Polymetallic Pollution and Remediation of Agrosoddy-Podzolic Soils. Moscow University Soil Science Bulletin, 2021, 76, 33-40.	0.1	2
46	Chemodiagnostic by Lipid Analysis of the Microbial Community Structure in Trace Metal Polluted Urban Soil. Springer Geography, 2018, , 150-160.	0.3	1
47	Influence of Commercial Humic Products on Living Organisms and Their Detoxification Ability in Cu-Polluted Soil in Model Experiment. , 2013, , 1089-1093.		1
48	Use of absorption spectra and their second-order derivative to quantify degradation of lignohumate by filamentous fungi. , 2018, , .		1
49	Dose-response modeling for the environmental risk assessment in cases of technogenic soil contamination. Principy Ã^kologii, 2015, 15, 73-88.	0.0	1
50	Biosurfactant Enhancement Factors in Microbial Degradation Processes. , 2016, , 167-182.		1
51	Features of algae tests of samples containing dissolved organic matter. Issues of Modern Algology (Вопр	Đ¾ÑÑ< ÑI 0.1	D¾Đ²Ñ€Đµ⊙ I
52	The Study of Benthic Microflora by a Near-bottom Disk. Hydrobiological Journal, 2001, 37, 6.	0.2	0
53	Use of the Field Data for Assessment of Hazardous Concentration of Pollutants in Soil and Modelling of Species Sensitivity Distribution. Springer Geography, 2018, , 137-149.	0.3	0
54	Influence of Lead Nitrate and Acetate Applied to Sod-Podzolic Soil on its Bioindicative Parameters. Biology Bulletin, 2018, 45, 1293-1300.	0.1	0

#	Article	IF	CITATIONS
55	Processing of toxicological studies results in the statistical program R. Principy Ã`kologii, 2015, 15, 12-26.	0.0	0
56	Application of Recent Omics Achievements in Bioremediation Processes Illustrated by Progress in Microbial Surfactants Commercialization. , 2016, , 219-232.		0
57	Formulation of a Multifunctional Biopreparations for Phytoremediation of Oil-Contaminated Soils: from Laboratory to Pilot-Industrial Technology. Ecology and Industry of Russia, 2018, 22, 44-49.	0.2	0
58	Interaction of different pigmented micromycetes with humic substances and stability of soil biomes: spectral characterization. IOP Conference Series: Earth and Environmental Science, 2021, 862, 012053.	0.2	0