Feifei Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1974581/publications.pdf

Version: 2024-02-01

623734 752698 25 402 14 20 citations h-index g-index papers 27 27 27 223 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. Journal of Fluid Mechanics, 2019, 866, 33-60.	3.4	53
2	Simulation of quasi-static drainage displacement in porous media on pore-scale: Coupling lattice Boltzmann method and pore network model. Journal of Hydrology, 2020, 588, 125080.	5.4	48
3	Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. Physics of Fluids, 2018, 30, .	4.0	42
4	Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method. Advances in Water Resources, 2020, 145, 103738.	3.8	39
5	Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. International Journal of Heat and Mass Transfer, 2020, 158, 120000.	4.8	23
6	Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis. Transport in Porous Media, 2021, 140, 395-420.	2.6	23
7	Magnetic-actuated "capillary container―for versatile three-dimensional fluid interface manipulation. Science Advances, 2021, 7, .	10.3	19
8	Pore-Scale Study on Convective Drying of Porous Media. Langmuir, 2022, 38, 6023-6035.	3.5	19
9	Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling. Physical Review E, 2022, 105, 025101.	2.1	18
10	LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media. Transport in Porous Media, 2019, 128, 929-943.	2.6	17
11	Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie - International Edition, 2020, 59, 14234-14240.	13.8	17
12	Spontaneous Imbibition in a Square Tube With Corner Films: Theoretical Model and Numerical Simulation. Water Resources Research, 2021, 57, e2020WR029190.	4.2	17
13	Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Physical Review E, 2019, 99, 053306.	2.1	16
14	Evaporation Induced Spontaneous Microâ€Vortexes through Engineering of the Marangoni Flow. Angewandte Chemie - International Edition, 2020, 59, 23684-23689.	13.8	16
15	Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model. Drying Technology, 2022, 40, 719-734.	3.1	11
16	All-printed point-of-care immunosensing biochip for one drop blood diagnostics. Lab on A Chip, 2022, 22, 3008-3014.	6.0	7
17	A Dynamic Pore Network Model for Imbibition Simulation Considering Corner Film Flow. Water Resources Research, 2022, 58, .	4.2	6
18	Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks. Applied Thermal Engineering, 2021, 187, 116585.	6.0	4

#	Article	IF	CITATIONS
19	Self-Driven Multiplex Reaction: Reactant and Product Diffusion via a Transpiration-Inspired Capillary. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22031-22039.	8.0	3
20	Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. Physical Review E, 2021, 103, 023311.	2.1	2
21	Evaporation Induced Spontaneous Microâ€Vortexes through Engineering of the Marangoni Flow. Angewandte Chemie, 2020, 132, 23892-23897.	2.0	1
22	Drying of porous materials at pore scale using lattice Boltzmann and pore network models. Journal of Physics: Conference Series, 2021, 2069, 012001.	0.4	1
23	Frontispiz: Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie, 2020, 132, .	2.0	O
24	Frontispiece: Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
25	Nonâ€Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. Angewandte Chemie, 2020, 132, 14340-14346.	2.0	0